
A Type Language for Calendars

François Bry, Frank-André Rieß, and Stephanie Spranger

Institute for Informatics, Univ. Munich, Germany
http://www.pms.ifi.lmu.de

contact: spranger@pms.ifi.lmu.de

Abstract. Time and calendars play an important role in databases,
on the Semantic Web, as well as in mobile computing. Temporal data
and calendars require (specific) modeling and processing tools. CaTTS
is a type language for calendar definitions using which one can model
and process temporal and calendric data. CaTTS is based on a “theory
reasoning” approach for efficiency reasons. This article addresses type
checking temporal and calendric data and constraints. A thesis under-
lying CaTTS is that types and type checking are as useful and desir-
able with calendric data types as with other data types. Types enable
(meaningful) annotation of data. Type checking enhances efficiency and
consistency of programming and modeling languages like database and
Web query languages.

1 Introduction

Time and calendars play an important role in databases, on the Semantic Web,
as well as in mobile computing. A difficulty of temporal and calendric data is
that they often depend on cultural, legal, professional, and/or locational contexts
[1]. E.g. the date “12/02/2005” is interpreted as 12th February 2005 in France
while it is interpreted as 2nd December 2005 in the US. Time and calendar ex-
pressions like “month” or “teaching term” can be interpreted regarding different
calendars. Calendars are arbitrary human abstractions of the physical flow of
time. They enable to measure time in different units like “day”, “week”, “work-
ing day”, and “teaching term”. Examples of calendars are cultural calendars like
the Gregorian, the Julian, the Hebrew, and the old and new Chinese calendars
as well as professional calendars like the academic calendar of a University.

To enable computers to meaningfully process temporal and calendric data
and expressions, the data need to be given a well-defined meaning. To this aim,
the type language CaTTS has been developed. CaTTS is presented in [2], an arti-
cle that focuses CaTTS’ data and constraint modeling aspects. CaTTS is a type
language for calendar definitions following a programming language approach
using which one can model and process temporal and calendric data. Using
CaTTS, one can easily define arbitrary calendars including rather complicated
ones. In particular, time and calendar notions like “day”, “month”, “teaching
term”, and “exam week” can be defined as types. Calendric types are declared
by (user-defined) predicates that specify the elements belonging to a type. E.g.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Access LMU

https://core.ac.uk/display/12175082?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

a type “exam week” may be declared by a predicate that selects only those ele-
ments from type “week” that contain examination days. Such calendric types are
partially ordered (by a subtyping relation) in a CaTTS calendar specification,
itself a type. E.g. type “exam week” is a subtype of type “week”, following a
conversion interpretation of subtyping. In addition to providing means for mod-
eling calendric types and calendars, CaTTS is based on a “theory reasoning”
approach using constraint solving techniques for efficient automated reasoning.
CaTTS’ reasoner is presented in [3], an article that focuses on constraint rea-
soning with domains over arbitrary calendric types defined in CaTTS.

This article addresses type checking calendric data and constraints typed af-
ter calendric types defined in CaTTS. The terminology used is widespread in the
type checking community [4]: “type checking” denotes “static type checking”,
i.e. at compile time, and “dynamic checking” denotes “dynamic type checking”,
i.e. at evaluation time. CaTTS’ type checker is intended to be, in principle, used
to type check programs or specifications in any language (e.g. SQL, XQuery,
Sparql, RDF, OWL), using temporal and calendric data enriched with type an-
notations after some calendar specified in CaTTS. In particular, it is used to
type check calendric constraint programs in CaTTS-CL, the constraint language
of CaTTS. The authors of the work reported about in this article claim that
types and type checking are as useful and desirable with calendric data types
as with other data types for the following reasons. Types complement data with
machine readable and processable semantics. Type checking is a very popular
and well established “lightweight formal method” to ensure program and system
behavior and to enforce high-level modularity properties. Types enable (mean-
ingful) annotation of data. Type checking enhances efficiency and consistency
of programming and modeling languages like Web query languages. Specific as-
pects of calendars make type checking with calendars an interesting challenge:
an appointment scheduler inferring an appointment for a phone conference of
two persons (where one is in Munich and the other in Tel Aviv) refers not only
to several time constraints formulated by the conference attendees but also to
various temporal and calendric data of different types. Types give such data
their intended semantics, e.g. that some data refer to days. Type checking en-
sures certain semantics on the data when processing them, e.g. that a week can
never be during a day.

2 CaTTS: Programming with Time and Calendars

The type language CaTTS is a programming language approach to data model-
ing and reasoning with time and calendars. CaTTS consists of two languages, a
type definition language, CaTTS-DL, and a constraint language, CaTTS-CL. In
what follows, the principal features of CaTTS-DL, i.e. predicate types to declar-
atively define arbitrary temporal and calendric notions like “day” or “teaching
term” as types and those of CaTTS-CL, i.e. time and conversion constraints to
reason over calendric data typed after types defined in CaTTS-DL are presented.

2.1 Subtype Constructors for Calendric Types

In common-sense set theory, infinite sets are logically encoded by predicates:
for any set A, the predicate p : A →

�
defines the set of those elements of A

that satisfy p. Such sets are called predicate sets. Examples of predicate sets are
non-negative integers (in set notation {x : � | x > 0}) and integer lists with
n ∈ � members (in set notation {l : � ∗ | length(l) = n}).

In type theory, predicate sets are used to define dependent types [5] and to
define types in specification languages of proof assistents and theorem provers
[6]. CaTTS uses predicate sets in a different manner. First, CaTTS uses predicate
sets as a means to define calendric types like “month”, “working day”, “teaching
term”, or “exam week”. Second, CaTTS restricts the definition of predicate sets
to aggregations and inclusions of time by providing type constructors which are
limited to aggregations and inclusions always define subsets isomorphic to the
integers.1 Finally, CaTTS uses predicate sets as a means to define conversions
between calendric types, and, hence, constraint solving on calendric data over
arbitrary calendric types.

Aggregations. E.g. the infinite set of weeks can be specified by the subset
of those intervals of days having a duration of seven days and beginning on
Mondays. This predicate can be directly expressed in CaTTS-DL defining the
type week as an aggregation subtype of the type day as follows:

type week = aggregate 7 day @ day (1) ;

The type week is an aggregation of days such that each week corresponds to
an interval of 7 days and such that the week indexed by 1 starts with the day
indexed by 1. I.e. the predicate 7 day @ day(1) of type week (that follows the
constructor aggregate) specifies weeks in terms of days. We say that the type
week is an aggregation subtype of the type day, written week � day.

Definition 1. Let σ and τ be calendric types defined in CaTTS-DL.
σ is an aggregation subtype of τ , denoted σ � τ , if every element of σ is an
interval over τ and every element of τ is included in (exactly) one element of σ.

Note that CaTTS-DL supports the definition of aggregation subtypes which
are neither periodic nor total. In particular, the following irregular aggregations
can be defined in CaTTS: (1) aggregations that include elements of different
durations involving often complex conditions like Gregorian months:

type month = aggregate
31 day named january ,
a l t e r n a t e month (i)
| (i div 1 2) mod 4 == 0 &&

((i div 1 2) mod 400 != 100
| | (i div 1 2) mod 400 == 0) −> 29 day

1 Note that the elements of each calendric type defined in CaTTS can be conveniently
represented by integer sets.

| otherwise −> 28 day
end named f ebruary , . . . , 3 1 day named december @ day (1) ;

(2) aggregations whose elements have gaps in time like “working week”:

type working week = week #< working day ;

and (3) aggregations which do not aggregate time completely like “weekend”:

type weekend = aggregate 2 weekend day @ weekend day (1) ;

CaTTS’ aggregation subtype constructors are given in Appendix A.

Inclusions. E.g. the infinite set of weekend days can be specified by the subset
of those days which are either Saturdays or Sundays. This predicate can be
directly expressed in CaTTS-DL defining the type weekend day as an inclusion
subtype of the type day as follows:

type weekend day = select day (i) where
relative i in week >= 6 && relative i in week <= 7;

The type weekend day is an inclusion of days such that only those days are se-
lected which correspond to the last two in each week. I.e. the predicate relative

i in week >= 6 && relative i in week <= 7 of type weekend day (that
follows the constructor select...where) specifies weekend days in terms of
days. We say that the type weekend day is an inclusion subtype of the type day,
written weekend day ⊆ day.

Definition 2. Let σ and τ be calendric types defined in CaTTS-DL.
σ is an inclusion subtype of τ , denoted σ ⊆ τ , if every element of σ is an
element of τ .

Note that CaTTS provides with an appropriate set of language constructs
sufficient to define inclusion subtypes corresponding to arbitrary subsets like
“exam week”, “teaching lesson” or someone’s personal vacations, particularly
sufficient to declare calendric notions of professional calendars as types. CaTTS’
inclusion subtype constructors are common set-theoretic operations as well as
the previously used select construct that allows for defining predicate sets. The
syntactic forms are given in Appendix A.

Calendars. In CaTTS-DL, every calendric type is defined in a CaTTS-DL
calendar specification. Such calendars are finite, packaged collections of calen-
dric types and calendar specifications which can be reused and parameterized,
i.e. calendars are themselves types. Each CaTTS-DL calendar specification con-
tains a user-defined or a pre-defined reference type. CaTTS’ pre-defined reference
type corresponds to Unix seconds (UTC seconds with midnight at the onset of
Thursday, January 1 of year 1970 (Gregorian) as fixed point indexed by 1). Any
user-defined reference type can be defined by a parameterless type constructor.
Each further type definition in a CaTTS-DL calendar specification is then an

(direct or indirect) aggregation or inclusion subtype of the reference type. Thus,
≤:=� ∪ ⊆ is an order relation on calendric types defined in a CaTTS-DL calen-
dar specification. The following definition formalizes the notion of calendar, as
used in CaTTS.

Definition 3. A calendar C = {τ1, . . . τn} is a finite set of calendric types
such that there exists a τi ∈ C and for all τj ∈ C, i, j ∈ {1...n} and i 66= j τj is
≤-comparable with τi.

The subsequently illustrated set of calendric types defines a CaTTS-DL cal-
endar; each of the calendric types is ≤-comparable with type day.

week
≤

day

month
≤@@

≤weekend day
��

year
≤

CaTTS-DL calendar specifications of different cultural and professional cal-
endars, in particular the Gregorian, Islamic and Hebrew calendars and variations
of the Gregorian calendar like the Japanese calendar are given in [2, 1].

Note that since with most applications, one would appreciate not to specify
dates and times using indices of the elements of CaTTS types like day(23) or
second(-123), but instead date formats like “5.10.2004”, “2004/10”, or “Tue
Oct 5 16:39:36 CEST 2004”, CaTTS provides with the format definition lan-
guage CaTTS-FDL a means to define date formats that represent values of
calendar types defined in a CaTTS-DL calendar specification. CaTTS-FDL has
been introduced in [2].

2.2 Domain, Time, and Conversion Constraints

CaTTS-CL, CaTTS’ constraint language, is typed after CaTTS-DL type defini-
tions. CaTTS-CL is a language to declaratively express a wide range of tempo-
ral and calendric problems over different domains of calendric types defined in
CaTTS-DL. Such problems are solved by CaTTS-CL’s constraint solver. This
solver is presented in [3].

Given a CaTTS-DL specification of the Gregorian calendar (with types “day”,
“working day”, and “month”) and CaTTS-FDL format specifications for types
“day” and “month”, one can specify a problem like planning a meeting of three
consecutive working days after 22nd April 2005 that is finished before May 2005.
Such a problem can be expressed in CaTTS-CL as follows:

Meeting i s 3 working day &&
Meeting after "22.04.2005 " && Meeting before "05.2005"

Meeting is 3 working day is a CaTTS-CL domain constraint that has the
following meaning: the variable Meeting represents the domain of all 3 working
day long intervals. This domain is related to Meeting by applying the con-
straint is to Meeting and 3 working day. Thus, the type of Meeting (and

the domain represented by Meeting) is “interval of working days”, denoted
Meeting: working day∗, and read as “Meeting is a subset of the set of in-
tervals of working days”. Note that since constraint variables like Meeting rep-
resent domains (i.e. sets of possible values), the symbol “:” is read as “subset of”
rather than “element of”. Meeting after "22.04.2005" and Meeting before

"05.2005" are CaTTS-CL time constraints that have the following meaning:
the constraint after is a subset of the Cartesian product of the domains of
Meeting (of type working day∗) and "22.04.2005" (of type day). Similarly,
before is a subset of the Cartesian product of the domains of Meeting (of
type working day∗) and "05.2005" (of type month).2 Note that since CaTTS-
CL is a language with subtyping the type of Meeting after "22.04.2005" is
day∗×day∗, written Meeting after "22.04.2005": day∗×day∗ and read as
“Meeting after "22.04.2005" is a subset of pairs of intervals over days”.
The type of Meeting before "05.2005" is day∗×day∗, as well. The types of
the variable Meeting and the constraints Meeting is 3 working day, Meeting
after "22.04.2005", and Meeting before "05.2005" are infered by applying
CaTTS’ subtyping and typing rules which are given in Appendix B. Under the
assumption that the context Γ = (M : w day∗), the type of the constraint M

before "05.2005" is inferred as follows3:

Γ ` ”05.2005” : month (T-Date)
M : w day∗ ∈ Γ (T-Var) Γ ` ”05.2005” : month month � month∗ (AT-Sub)

Γ ` M : w day∗ w day∗ ⊆ day∗ (IT-Sub) Γ ` ”05.2005” : month∗ month∗ � day∗ (AT-Sub)

Γ ` M : day∗ Γ ` ”05.2005” : day∗ (T-Interval)

Γ ` M before ”05.2005” : day∗ × day∗

Similary, the subtyping judgements appearing in this derivation tree (i.e.
month � month∗, month∗ � day∗, and w day∗ ⊆ day∗) are inferred by applying
the subtyping rules given in Appendix B.1.

The above given CaTTS-CL program is evaluated as follows: (1) CaTTS-CL
constraints are evaluated by type checking them using the typing and subtyping
rules given in Appendix B. (2) The typing derivations that result from type
checking CaTTS-CL programs are translated into (lower-level) constraints used
by CaTTS’ constraint propagation algorithm given in [3]. I.e. typing derivations
are used to convert CaTTS-CL constraints into lower-level constraints without
subtyping. This conversion is achieved by generating conversion constraints from
the typing derivations. (3) Finally, the evaluation rules of CaTTS’ constraint
solver, i.e. the constraint propagation algorithm that is given in [3] are used to
obtain the behavior of CaTTS-CL programs. Thus, no evaluation rules, i.e. no
operational semantics is (directly) defined for CaTTS-CL. Rather a semantics for
CaTTS-CL is given by converting CaTTS-CL into a constraint language without
subtyping (the “target” calculus, denoted CaTTS − CL−sub) whose semantics
is already understood since the constraints of the CaTTS−CL−sub are nothing
but finite domain constraints over integer sets.

2 In Constraint Programming every constraint is a subset of the Cartesian product of
the domains of its variables (and it is equal to this Cartesian product when solved).

3 “M” denotes Meeting and “w day” denotes working day

3 A Type Checker for CaTTS

CaTTS’ type checker is straightforwardly defined by subtyping and typing re-
lations which are given in Appendix B. The difference of CaTTS compared to
type systems with subtyping is twofold: (1) CaTTS has two different subtype
relations (i.e. aggregation and inclusion). (2) Base types like “week” or “teaching
term” may be defined by predicates.

3.1 Subtyping

CaTTS’ subtyping relation is defined as a collection of inference rules deriving
subtyping judgements of the form σ ≤ τ (where ≤:=⊆ ∪ �), read as “σ is a
subtype of τ”. The subtyping relation ≤ defines a pre-order on calendric types
defined in a CaTTS-DL calendar specification. The following two rules state that
≤ is a pre-order:

σ ≤ σ (S-Refl) ρ ≤ σ σ ≤ τ (S-Trans)

ρ ≤ τ

A complete list of the inference rules to derive subtyping judgements that
define CaTTS’ subtyping relation is given in Appendix B.1. Note that CaTTS’
subtyping relation differs from other (existing) subtyping relations in two as-
pects: (1) CaTTS’ subtyping relation is defined by the union of two different
subtyping relations, aggregation (cf. Definition 1) and inclusion (cf. Definition
2), which apply to different type constructors. (2) CaTTS provides with language
constructs to define base types like day, week, or teaching term by predicates
either as an inclusion subtype or as an aggregation subtype (of a base type
already defined in a CaTTS-DL calendar specification).

The subtyping rules for inclusions and aggregations defined by predicates are
characteristic for CaTTS. They are given in the following.

τtype pa(x), x : τ (AS-Aggr) τtype pi(x), x : τ (IS-Sel)

{z : τ | pa(x)}type � τ {z : τ | pi(x)}type ⊆ τ

The inference rule (AS-Aggr) defines the following: for a (base) type τ
defined in CaTTS-DL, and an aggregation predicate pa(x) (in CaTTS’ syntax:
aggregate e {,e} @ e) with x of type τ , the set of the elements x ∈ τ that
satisfy the predicate pa(x) define an aggregation subtype of τ , denoted {z : τ |
pa(x)}type � τ . The inference rule (IS-Sel) is defined similarly; pi(x) denotes
an inclusion predicate (in CaTTS’ syntax: select e where c). I.e. these two
inference rules introduce subtyping judgements between pairs of (basic) types
defined by some (user-defined) aggregation (or inclusion) predicate.

3.2 Well-Typed CaTTS-CL Programs

CaTTS-CL expressions and constraints (cf. Appendix A for the syntactic froms)
are type checked by deriving typing judgements of the form Γ ` e : τ (i.e.

expression e has type τ in the context Γ). The context Γ is defined recursively
as follows: ∅ is a context; if Γ is a context which does not declare (the variable)
X and τ is a calendric type defined in CaTTS-DL, then Γ, X : τ is a context.
A complete list of the inference rules to derive typing judgements that define
CaTTS’ typing relation is given in Appendix B.2. Among these inference rules,
the following two illustrate the effect inclusion and aggregation subtyping has
on type checking:

Γ ` e : σ σ ⊆ τ (IT-Sub) Γ ` e : σ∗ σ∗ � τ∗ (AT-Sub)
Γ ` e : τ Γ ` e : τ∗

Those two rules make use of CaTTS’ two subtyping judgements, one for
inclusions, of the form σ ⊆ τ , and one for aggregations, of the form σ � τ .
In particular, those two rules connect the inference rules for typing with those
for subtyping. I.e. whenever the type checker applies one of these two rules
in a typing derivation, the subtype checker is called to verify the subtyping
judgement (i.e. σ ⊆ τ (resp. sigma � τ). The rule (IT-Sub) applies if σ is
an inclusion subtype of τ . The rule has the following meaning: whenever the
subtyping judgement σ ⊆ τ is provable for types σ and τ , then the (CaTTS-
CL) expression e of type σ can be “considered as” an expression of type τ . E.g.
if e = “18.04.2005” is an expression of type working day, then “18.04.2005”
can be also considered as a day (if working day ⊆ day can be proved). The
rule (AT-Sub) applies if σ∗ (read as “interval of σ”) is an aggregation subtype
of τ∗ (read as “interval of τ”). The rule has the following meaning: whenever
the subtyping judgement σ∗ � τ∗ is provable for types σ∗ and τ∗, then the
(CaTTS-CL) expression e of type σ∗ can be “considered as” an expression of
type τ∗. E.g. if e = “first week in April 2005” is an expression of type week∗,
then “first week in April 2005” can also be considered as an interval of days,
i.e. the day interval from “04.04.2005” to “10.04.2005” (if week∗ � day∗ can be
proved). (AT-Sub) is only applicable to interval types because with aggregation
subtyping only intervals of elements of the supertype are aggregated to elements
of the (new) subtype. Since each element of a calendric type defined in CaTTS-
DL is considered as having a duration, (AT-Sub) is a natural way of obtaining
subtyping among aggregations of time as they appear in calendars.

Note that some (semantic) aspects of calendric data and constraints can only
by checked dynamically like to check for inequality of the elements of different
aggregation subtypes (e.g. that a day can never be equal to a week) and to check
out-off bound violations of a finite calendric type like “Heisei”, the era of the
current Japanese emperor. Dynamic checking in CaTTS is out of the scope of
this article.

3.3 A Subtyping Semantics for CaTTS

Giving semantics to a language with subtyping has been thoroughly investgated
in the literature. E.g. in [7], subtyping has been expressed similarly to polymor-
phism in ML-style languages, e.g. in [8], subtyping has been expressed through

explicit mechanisms as parts of the type checking system, and in [9], subtyp-
ing has been expressed as implicit coercion. Good surveys on semantic models
of subtyping can be found in [10, 11]. Common to all these approaches is that
subtyping has been mainly investigated for lambda-calculi with structural types
like records. However, in CaTTS subtyping relies on and refers to predicate sets;
thus, calendric types are not syntactically defined by means of structure, but, in-
stead, semantically by means of predicates. Moreover, calendric types are used
to type check the constraint language CaTTS-CL rather than a functional or
object-oriented language. CaTTS’ approach to a semantic model of subtyping
relies on the approach proposed in [9]. This form of subtyping consists of a set
(of elements) for each type together with a conversion from σ to τ whenever
σ ≤ τ is provable. This form of subtyping is called conversion interpretation.
Such a conversion interpretation can be defined by a syntactic translation that
replaces the rules for subsumption (i.e. (IT-Sub) and (AT-Sub) in CaTTS,
given above) by conversion. Obtaining coherence (i.e. the logical connection be-
tween the subtyping and typing relations and the conversion semantics such that
the algorithm implementing the conversion semantics is proved to be sound and
complete) is serious to any conversion interpretation.

In CaTTS, the subtyping relation between calendric types is interpreted as
a conversion. I.e. whenever σ ≤ τ is provable from CaTTS’ subtyping judge-
ments, a conversion from σ to τ is performed. This conversion remains implicit in
CaTTS-CL expressions. Subtyping is used in type checking such expressions. I.e.
CaTTS-CL programs are evaluated by type checking them using the “high-level”
typing and subtyping rules given in Appendix B.The conversion becomes explicit
by using a “lower-level” language without subtyping to evaluate CaTTS-CL pro-
grams; in fact, by using time and conversion constraints of CaTTS’ constraint
propagation algorithm which is given in [3]. Thus, CaTTS provides no evaluation
rules for the high-level constraint language CaTTS-CL. Evaluation of CaTTS-CL
programs is rather achieved by providing a translation of high-level CaTTS-CL
expressions with subtyping into lower-level CaTTS-CL constraints without sub-
typing, i.e. CaTTS − CL−sub, and then using the evaluation relation (i.e. the
constraint propagation algorithm given in [3]) to obtain the operational behavior
of CaTTS-CL programs. This translation interprets subtyping in CaTTS-CL as
conversion constraints already definable in terms of CaTTS − Cl−sub. In par-
ticular, the proof that σ is a subtype of τ (i.e. the derivation from applying
the high-level subtyping and typing rules on CaTTS-CL expressions) generates
a conversion cτ

σ from σ to τ whenever σ ≤ τ is provable. The above given
subsumption rules (IT-Sub) and (AT-Sub) for inclusions and aggregations are
interpreted by the application of cτ

σ (i.e. the conversion form σ to τ) to the
interpretation of the CaTTS-CL expression e as an element of σ.

Formally, CaTTS’ conversion interpretation of subtyping consists of conver-
sions for subtyping judgements and for typing judgements.

For subtyping judgments σ ≤ τ , the conversion is defined by generating
conversion contraints from subtyping derivations. We present four of these rules
here; the full list is given in Appendix C.

subtyping rule conversion constraint

σ ≤ σ (S-Refl) cσ
σ

def

=
x : σ, y : σ, convert(x, y)

ρ ≤ σ σ ≤ τ (S-Trans) cτ
ρ

def

=
x : ρ, cτ

σ(cσ
ρ (x))

ρ ≤ τ

τtype pa(x), x : τ (AS-Aggr) cτ
{z:τ |pa(x)}

def

=
x : {z : τ | pa(x)}, y : τ,

{z : τ | pa(x)}type � τ convert(x, y)

τtype pi(x), x : τ (IS-Sel) cτ
{z:τ |pi(x)}

def

=
x : {z : τ | pi(x)}, y : τ,

{z : τ | pi(x)}type ⊆ τ convert(x, y)

For the reflexivity rule (S-Refl) the (CaTTS − CL−sub) conversion con-
straint convert is nothing but an identity operation. In case of the transitivity
rule (S-Trans), the conversion is defined by composition of the conversions gen-
erated from the rule’s hypotheses on an element of the subtype ρ. For cases of
the subtyping rules for aggregations and inclusions defined by predicate, the con-
versions are basic CaTTS − CL−sub conversion constraints generated from the
types’ predicates pa(x) (resp. pi(x)). (The implemenation of CaTTS − CL−sub

conversion constraints are presented in [3].)

Having defined this conversion for every provable subtyping judgement, a
meaning must be given to typed CaTTS-CL expressions. This is done by induc-
tion on the typing derivation of each expression. For typing judgments Γ ` e : τ ,
the conversion applies the typing rules as with type checking. The subsumption
rules (IT-Sub) and (AT-Sub) for inclusions and aggregations are interpreted by
the application of the conversion for subtyping judgements to the interpretation
of the CaTTS-CL expression e as an element of σ (i.e. of the subtype):

typing rule translation

Γ ` e : σ∗ σ∗ � τ∗ (AT-Sub) if Γ ` e : τ∗ is derived from Γ ` e : σ∗ using σ∗ � τ∗,

Γ ` e : τ∗ then trans(Γ ` e : τ∗) = cτ∗

σ∗(Γ ` e : σ∗)

Γ ` e : σ σ ⊆ τ (IT-Sub) if Γ ` e : τ is derived from Γ ` e : σ using σ ⊆ τ ,
Γ ` e : τ then trans(Γ ` e : τ) = cτ

σ(Γ ` e : σ)

The two subsumption rules (AT-Sub) and (IT-Sub) are translated by mak-
ing the subtyping conversion “explicit”. I.e. the conversion constraint cτ

σ (resp.
cτ∗

σ∗) is applied to the expression e of type σ (resp. σ∗) whenever the subsumption
rule (IT-Sub) (resp. (AT-Sub)) is applied in a typing derivation.

The remaining rules of this translation are given in Appendix C. This transla-
tion of CaTTS-CL expressions is syntactically performed by translating CaTTS-
CL expressions into expressions expressible in CaTTS−CL−sub. The translation
is syntactic because it uses basic CaTTS − CL−sub conversion constraints and
compositions of such constraints.

3.4 Coherence of the Conversion

The proof that the conversion of CaTTS-CL subtyping semantics is coherent
is twofold: first, we have two show that the conversion constraints are unique.
Second, we have to show that the translation is coherent.

Uniqueness of Conversion Constraints. To show that conversion constraints
are unique by a series of proof transformations that do not change the associated
conversion constraints, we begin with the elimination of certain uses of (S-Refl)
and (S-Trans), in particular any instance of (S-Refl) that is a hypothesis of
(S-Trans) can be eliminated from the proof without changing the conversion
constraint. This can be shown by case for (S-Refl) left (resp. right) hypothesis
of (S-Trans).

The uniqueness of conversion constraints is formalized as a theory over CaTTS−
CL−sub where ε denotes the set of all equations of compositions of pairwise dis-
junct basic conversion constraints. In particular, ε says that if there are two
different compositions of basic conversion constraints between two types, the
two compositions must give the same function. I.e. when drawing the subtyping
assumpptions of a proof in a diagram, then ε are the equations stating that this
diagram commutes.

Proposition 1. Suppose σ ≤ τ and cτ
σ and cτ

σ are the conversion constraints
from σ to τ given by any two proofs of σ ≤ τ . Then ε ` cτ

σ = cτ
σ in CaTTS −

CL−sub.

The proof goes by induction on the structure of the type σ such that for any
proofs σ ≤ τ without the use of the transitivity rule (S-Trans) (which can be
shifted to the end of any proof for σ ≤ τ) nor the reflexivity rule (S-Refl).
The rules (S-Trans) and (S-Refl) and are the only subtyping rules that can
be applied independent of the structure of the types σ and τ , i.e. they can be
applied in each step of a proof for σ ≤ τ .

Coherence of Translations. For coherence of the translation, the proof of the
typing derivations must be such that the use of the subsumption rules (IT-Sub)
and (At-Sub) are postponed as much to the end of the proof as possible. This
is for the same reasons as for postponing the subtyping rules (S-Trans) and
(S-Refl) which can be applied in each step of the proof as it is the case for
the subsumption rules since they are not syntax driven. The result is a typing
derivation in which we first derive the minimum type for an expression e, and
then use the subsumption rules in the final step in deriving any desired type.

Proposition 2. Let Γ ` e : σ a CaTTS-CL expression. Suppose there are two
typing derivations for Γ ` e : σ and let e̊,�e = trans(Γ ` e : σ) be the translations
of e taken according to the two typing derivations. Then ε ` Γ ` e̊ = �e: σ in
CaTTS − CL−sub.

The proof goes by transforming the typing derivations such that the sub-
sumption rules are only applied in the last step of the derivation, in particular,
in CaTTS-CL constraints. Then the typing derivation is determined by the struc-
ture of the expression e, and, thus, the same for any derivation of e. The final
conversion constraint (applied when using one of the subsumption rules) is de-
termined by the type σ. And this conversion does not change the associated
expression with explicit conversions.

4 Related Work

Theories like time and calendars can be integrated into a language in two dif-
ferent ways. (1) Using the (automated reasoning) approach of “axiomatic rea-
soning”, the integrated theory is axiomatized in the (general purpose) reasoning
language. (2) Using the (automated reasoning) approach of “theory reasoning”
[12, 13], the integrated theory is supported by specialized inference rules. This
approach is well-known through paramodulation [14]. “Theory reasoning” makes
user friendly modeling and efficient processing of data possible.

CaTTS complements data type definition languages and data modeling and
reasoning methods for the Semantic Web such as XML Schema [15], RDF [16],
and OWL [17]: CaTTS considerably simplifies the modeling of specificities of cal-
endars such as leap years, sun-based cycles like Gregorian years, or lunar-based
cycles like Hebrew months, “gaps” in time (e.g. “working-day”), “gapped” data
items (e.g. “working-week”) using predicate type constructors. XML Schema
provides a considerably large set of predefined time and date data types dedi-
cated to the Gregorian calendar whereas CaTTS enables user-defined data types
dedicated to any calendar. RDF and OWL are designed for generic Semantic
Web applications. In contrast CaTTS provides with methods specific to partic-
ular application domains, that of calendars and time.

CaTTS complements data modeling and programming languages like database
query languages and Web query languages with type checking approaches spe-
cific to time and calendars. The well-known advantages of typed languages such
as error detection, language safety, efficiency, consistency, abstraction, documen-
tation, and annotation whereas consistency and annotation obtain particular in-
terest due to overloaded semantics of temporal and calendric data equally apply
to CaTTS.

CaTTS inherently differs from both temporal database systems (http://www.
scism.sbu.ac.uk/cios/paul/Research/tdb links.html links to research on tempo-
ral database systems) and active database systems(http://www.ifi.unizh.ch/dbtg
/Links/adbs sites.html links to research on active database systems). Research
on temporal database systems mainly focuses on developing temporal data mod-
els, efficient temporal access methods, temporal dependencies, temporal consis-
tencies, and design of temporal query languages. Temporal database systems are
developed to store and access previous states of stored objects (possibly accord-
ing to different temporal dimensions like transaction time, valid time, and event
time). Active database systems are developed to initiate processes automatically

when some state reaches a certain pre-defined condition. However, CaTTS is de-
signed as a type language with type checking and theory reasoning approaches
specialized in not only time but also calendar modeling and reasoning. CaTTS
can be, in principle, used to enrich Database systems and languages as well
as Web languages with means to manipulate temporal and calendric data and
constraints.

CaTTS departs from time ontologies such as the KIF time ontology [18],
the DAML time ontology [19], and time in OWL-S [20] in many aspects. While
(time) ontologies follow the (automated reasoning) approach of “axiomatic rea-
soning”, CaTTS is based on a (specific) form of “theory reasoning”, an approach
well-known through paramodulation [14]. Like paramodulation ensures efficient
processing of equality in resolution theorem proving, CaTTS provides the user
with convenient constructs for calendric types and efficient processing of data
and constraints over those types. CaTTS comes along with a constraint solver
dedicated to calendar definitions in CaTTS-DL [3]; this dedication makes con-
siderable search space restrictions, hence gains in efficiency, possible.

5 Conclusion

This article has introduced a programming language approach to modeling and
reasoning with time and calendars. CaTTS is a type language for calendar defini-
tions. CaTTS enables user-friendly modeling of calendric and temporal data and
constraints. CaTTS is based on a “theory reasoning” approach using constraint
solving techniques for efficient automated reasoning. An approach to type check-
ing temporal and calendric data typed after calendric types defined in CaTTS
has been presented. Calendric types are used to give semantics to temporal and
calendric data. Relationships between calendric types are expressed in terms of
subtyping. Subtyping can be exploited to convert between calendric types which
is necessary for reasoning on calendric data.

CaTTS can be, in principle, used to enrich any modeling or programming
language like Database and/or Web query languages with means to user-friendly
modeling and efficiently processing temporal and calendric data.

Acknowledgment

This research has been funded in part by the PhD Program Logics in Com-
puter Science (GKLI) (cf. http://www.mathematik.uni-muenchen.de/ gkli) and
the European Commission and by the Swiss Federal Office for Education and
Science within the 6th Framework Program project REWERSE number 506779
(cf. http://rewerse.net).

References

1. Bry, F., Haußer, J., Rieß, F.A., Spranger, S.: Cultural Calendars for Programming
and Querying. In: Proc. 1st Forum on the Promotion of European and Japanese
Culture and Traditions in Cyber Society and Virtual Reality. (2005)

2. Bry, F., Rieß, F.A., Spranger, S.: CaTTS: Calendar Types and Constraints for
Web Applications. In: Proc. 14th Int. World Wide Web Conference, Japan. (2005)

3. Bry, F., Rieß, F.A., Spranger, S.: A Reasoner for Calendric and Temporal Data.
submitted to publication (2005)

4. Pierce, B.C.: Types and Programming Languages. MIT Press (2002)

5. Hofmann, M.: Syntax and Semantics of Dependent Types. In: Semantics and Logic
of Computation, Cambridge University Press (1997)

6. Rushby, J., Owre, S., Shankar, N.: Subtypes for Specifications: Predicate Subtyping
in PVS. IEEE Transactions on Software Engineering 24 (1998) 709–720

7. Ohori, A., Buneman, P.: Type Inference in a Database Programming Language.
In: Proc. of Symp. on Lisp and Functional Programming, USA. (1988) 174–183

8. Cardelli, L., Wegner, P.: On understanding Types, Data Abstraction, and Poly-
morphism. ACM Computing Surveys 17 (1985) 471–522

9. Breazu-Tannen, V., Coquand, T., Gunter, C., Scedrov, A.: Inheritance as Implicit
Coercion. Information and Computation 93 (1991) 172–221

10. Gunter, C.A., Mitchell, J.C.: Theoretical Aspects of Object-Oriented Program-
ming. MIT Press (1994)

11. Mitchell, J.C.: Foundations for Programming Languages. MIT Press (1996)

12. Stickel, M.E.: Automated Deduction by Theory Resolution. Journal of Automated
Reasoning 1 (1985) 333–355

13. Bry, F., Marchiori, M.: Ten Theses on Logic Languages for the Semantic Web. In:
Proc. W3C Workshop on Rule Languages for Interoperability, USA. (2005)

14. Robinson, G., Wos, L.: Paramodulation and Theorem Proving in First Order
Theories. Machine Intelligence 4 (1969) 135–150

15. W3C, World Wide Web Consortium: XML Schema Part 2: Datatypes. (2001)

16. W3C, World Wide Web Consortium: RDF Primer. (2004)

17. W3C, World Wide Web Consortium: OWL Web Ontology Language. (2004)

18. Knowledge Systems Laboratories, Stanford: Time Ontology in KIF. (1994)

19. DARPA Agent Markup Language: A DAML Ontology of Time. (2002)

20. Pan, F., Hobbs, J.R.: Time in OWL-S. In: Semantic Web Services, AAAI Spring
Symposium Series. (2004)

A The Syntax of CaTTS

e ::= expressions: c ::= constraints:
X variable true
d CaTTS-FDL date false
τ (i) part, i ∈ � X is 1 τ event
n τ duration, n ∈ � X is τ task
[e..e] endpoint interval X is n τ task + duration n ∈ �
e upto e duration interval X intervalC Y interval constraint
e downto e duration interval X metricC Y metric constraint
binOp e e binary operation e intervalC Z
unOp e unary operation e metricC Z

c && c conjunction

binOp ::= shift forward | shift backward | extend by | shorten by | relative to |
relative in | + | − | ∗ | mod | div | min | max | avg

unOp ::= duration | begin | end | index |
intervalC ::= equals | before | after | starts | started by | finishes | finished by |

during | contains | meets | met by | overlaps | overlapped by |
within | on or before | on or after

metricC ::= == | <= | < | > | >= | ! =

τ ::= type expressions:
reference (user-defined or predefined) reference type
refinement n @ e refinement, n ∈ �
aggregate e {,e} @ e (abs. anchored) aggregation
aggregate e {,e} ˜@ z (rel. anchored) aggregation, z ∈ �
select e where c selection
τn duration
τ∗ time interval
τ&τ conjunction
τ | τ disjunction
τ \ τ exception
τ# < τ restriction

B CaTTS’ Typing and Subtyping Relations

B.1 Subtyping Relation

The subtyping relation ≤ (i.e. ≤:= � ∪ ⊆) defines a pre-order on CaTTS-DL
types.

σ ≤ σ (S-Refl) ρ ≤ σ σ ≤ τ (S-Trans)

ρ ≤ τ

Subtyping rule for interval types:

σ ≤ σ∗ (S-IntervalCoer)

The subtyping rule for intervals and durations is covariant, as expected:

σ ≤ τ (S-Interval) σ ≤ τ (S-Duration)
σ∗ ≤ τ∗ σn ≤ τn

Aggregation Subtype Rules. The aggregation subtype rules for aggregations
and refinements:

τtype pa(x), x : τ (AS-Aggr) referencetype pr(x), x : reference (AS-Ref)

{z : τ | pa(x)}type � τ reference � {z : reference | pr(x)}type

The aggregation subtype rule for restrictions:

σ# < τ � τ (AS-Res)

Inclusion Subtype Rules. The inclusion subtype rule for selections:

τtype pi(x), x : τ (IS-Sel)

{z : τ | pi(x)}type ⊆ τ

The inclusion subtype rules conjunctions, disjunctions, and exceptions:

i ∈ {1, 2}, τi ⊆ τ1 | τ2 (IS-Dj1) i ∈ {1, 2}, σi ⊆ τ (IS-Dj2)

σ1 | σ2 ⊆ τ

i ∈ {1, 2}, τ1&τ2 ⊆ τi (IS-Cj1) i ∈ {1, 2}, σ ⊆ τi (IS-Cj2)

σ ⊆ τ1&τ2

τ \ σ ⊆ τ (IS-Ex)

B.2 Typing Relation

To connect subtyping and typing in CaTTS, the following two subsumption
rules, the inclusion subtype subsumption rule and the aggregation subtype sub-
sumption rule are given:

Γ ` e : σ σ ⊆ τ (IT-Sub) Γ ` e : σ∗ σ∗ � τ∗ (AT-Sub)
Γ ` e : τ Γ ` e : τ∗

Typing Rules for Calendric Data

X : τ ∈ Γ (T-Var)
Γ ` X : τ Γ ` d : τ (T-Date)

Γ ` i : � (T-Part) Γ ` n : � (T-Dur)
Γ ` τ1(i) : τ1 Γ ` n τ1 : τn

1

Γ ` e1 : τ1 Γ ` e2 : τ1 (T-EndpI) Γ ` e1 : τn
1 Γ ` e2 : τ1 (T-DurI)

Γ ` [e1..e2] : τ∗
1 Γ ` e1 to e2 : τ∗

1

where to ∈ {upto, downto}.

Typing Rules for Calendric Operations

Γ ` e1 : τ1 (T-D) Γ ` e1 : τ∗
1 (T-BE) Γ ` e1 : τ1 (T-I)

Γ ` duration e1 : τn
1 Γ ` b/e e1 : τ1 Γ ` index e1 : �

Γ ` e1 : τ∗
1 Γ ` e2 : τn

1 (T-Shift) Γ ` e1 : τ∗
1 Γ ` e2 : τn

1 (T-ExSh)

Γ ` shift e1 f/b e2 : τ∗
1 Γ ` e/s e1 by e2 : τ∗

1

Γ ` (index e1 : τ1) : � τ2 τ2 � τ1 (T-RelIn) Γ ` (index e1 : τ1) : � τ2 (T-RelTo)

Γ ` relative (index e1) in τ2 : � Γ ` relative (index e1) to τ2 : �

Γ ` e1 : τn
1 Γ ` e2 : τn

1 (T-ArD) Γ ` e1 : � Γ ` e2 : � (T-ArZ)

Γ ` e1 ard e2 : τn
1 Γ ` e1 arz e2 : �

where where b/e ∈ {begin, end}, f/b ∈ {forward, backward}, e/s ∈ {extend, shorten},
ard ∈ {+,−, ∗, mod, div, min, max, avg}, and arz ∈ {+,−, ∗, mod, div, min, max, avg}.

Typing Rules for Calendric Constraints

true : � (T-True) false : � (T-False)

Γ, X : τ ` 1 τ : τn (T-Event) Γ, X : τ∗ `< n > τ : τn (T-Task)

Γ ` X is 1 τ : τ Γ ` X is < n > τ : τ∗

Γ ` e1 : τ1 Γ ` e2 : τ1 (T-Interval) Γ ` e1 : τ1 Γ ` e2 : τ2 (T-Conj)
Γ ` e1 intervalC e2 : τ1 × τ1 Γ ` e1 && e2 : τ1 × τ2

Γ ` e1 : τn
1 Γ ` e2 : τn

1 (T-MetD) Γ ` e1 : � Γ ` e2 : � (T-MetZ)

Γ ` e1 metricD e2 : τn
1 × τn

1 Γ ` e1 metricZ e2 : � × �

Γ ` e1 : τ1 Γ ` e2 : τ2 (T-Convert)
Γ ` e1 convert e2 : τ1 × τ2

where intervalC ∈ {equals, before, after, starts, started by, finishes, finished by,
during, contains, meets, met by, overlaps, overlapped by, within, on or before,
on or after}, metricD ∈ {==, <=, <, >, >=, ! =}, and metricZ ∈ {==, <=
, <, >, >=, ! =}. < .. > denotes optionals.

C The Conversion

C.1 Conversion Constraints

For every subtyping judgement σ ≤ τ (cf. Section B.1), the conversion constraint
cτ
σ is defined by induction on the proof of σ ≤ τ , i.e. by a tree of judgments in

the constraint language without subtyping.

axiom/rule conversion constraint

(S-Refl) cσ
σ

def

=
x : σ, y : σ, convert(x, y)

(S-Trans) cτ
ρ

def

=
x : ρ, cτ

σ(cσ
ρ (x))

(S-IntervalCoer) cσ∗

σ
def

=
x : σ, y : σ∗, convert(x, y)

(S-Interval) cτ∗

σ∗
def

=
x : σ∗, (cτ

σ)∗(x)

(S-Duration) cτn

σn
def

=
x : σn, (cτ

σ)n(x)

(AS-Aggr) cτ
{z:τ |pa(x)}

def

=
x : {z : τ | pa(x)}, y : τ, convert(x, y)

(AS-Ref) c
{z:reference|pr(x)}
reference

def

=
x : reference, y : {z : reference | pr(x)},

convert(x, y)

(AS-Res) cτ
σ#<τ

def

=
x : σ# < τ, y : τ, convert(x, y)

(IS-Sel) cτ
{z:τ |pi(x)}

def

=
x : {z : τ | pi(x)}, y : τ, convert(x, y)

(IS-Dj1) c
τ1|τ2

τi

def

=
x : τi, y : τ1 | τ2, convert(x, y)

(IS-Dj2) cτ
σ1|σ2

def

=
x : σ1 | σ2, cτ

σ1
(x) | cτ

σ2
(x)

(IS-Cj1) cτi

τ1&τ2

def

=
x : τ1&τ2, y : τi, convert(x, y)

(IS-Cj2) cτ1&τ2

σ
def

=
x : σ, cτ1

σ (x)&cτ2

σ (x)

(IS-Ex) cτ
τ\σ

def

=
x : τ \ σ, y : τ, convert(x, y)

C.2 Translation of CaTTS-CL Expressions

The translation trans of CaTTS-CL expressions into constraint expressions with-
out subtyping is inductively defined on the typing judgements (cf. Section B.2).

axiom/rule translation

(T-Var) trans(Γ ` X : τ) = X : τ ∈ Γ
.
(AT-Sub) if Γ ` e : τ∗ is derived from Γ ` e : σ∗ using σ∗ � τ∗,

then trans(Γ ` e : τ∗) = cτ∗

σ∗(Γ ` e : σ∗)
(IT-Sub) if Γ ` e : τ is derived from Γ ` e : σ using σ ⊆ τ ,

then trans(Γ ` e : τ) = cτ
σ(Γ ` e : σ)

Note that since the translation trans merely applies the typing rules as with
type checking CaTTS-CL expressions except for the subsumption rules (IT-Sub)

and (AT-Sub) which are interpreted by applying the conversion constraints for
subtyping, only an example and the translation for the two subsumption rules
are presented.

