321 research outputs found

    Uptake and transfer of a Bt toxin by a lepidoptera to Its eggs and effects on Its offspring.

    Get PDF
    Research on non-target effects of transgenic crop plants has focused primarily on bitrophic, tritrophic and indirect effects of entomotoxins from Bacillus thuringiensis, but little work has considered intergenerational transfer of Cry proteins. This work reports a lepidopteran (Chlosyne lacinia) taking up a Bt entomotoxin when exposed to sublethal or low concentrations, transferring the entomotoxin to eggs, and having adverse effects on the first filial generation (F1) offspring. Two bioassays were conducted using a sublethal concentration of toxin (100.0 ng/ml Cry1Ac) for adults and a concentration equal to the LC10 (2.0 ng/ml Cry1Ac) for larvae. Cry1Ac is the most common entomotoxin expressed in Bt cotton in Brazil. In the adult diet bioassay there was no adverse effect on the parental generation (P0) adults, but the F1 larvae had higher mortality and longer development time compared to F1 larvae of parents that did not ingest Cry1Ac. For the 3rd instar larvae, there was no measurable effect on the P0 larvae, pupae and adults, but the F1 larvae had higher mortality and longer development time. Using chemiluminescent Western Blot, Cry1Ac was detected in F1 eggs laid by P0 butterflies from both bioassays. Our study indicates that, at least for this species and these experimental conditions, a ,65 kDa insecticidal protein can be taken up and transferred to descendants where it can increase mortality and development time

    Why compatibilist intuitions are not mistaken: a reply to Feltz and Millan

    Get PDF
    In the past decade, a number of empirical researchers have suggested that laypeople have compatibilist intuitions. In a recent paper, Feltz and Millan (2015) have challenged this conclusion by claiming that most laypeople are only compatibilists in appearance and are in fact willing to attribute free will to people no matter what. As evidence for this claim, they have shown that an important proportion of laypeople still attribute free will to agents in fatalistic universes. In this paper, we first argue that Feltz and Millan’s error-theory rests on a conceptual confusion: it is perfectly acceptable for a certain brand of compatibilist to judge free will and fatalism to be compatible, as long as fatalism does not prevent agents from being the source of their actions. We then present the results of two studies showing that laypeople’s intuitions are best understood as following a certain brand of source compatibilism rather than a “free-will-no-matter-what” strategy

    Detection and decay rates of prey and prey symbionts in the gut of a predator through metagenomics.

    Get PDF
    DNA methods are useful to identify ingested prey items from the gut of predators, but reliable detection is hampered by low amounts of degraded DNA. PCR-based methods can retrieve minute amounts of starting material but suffer from amplification biases and cross-reactions with the predator and related species genomes. Here, we use PCR-free direct shotgun sequencing of total DNA isolated from the gut of the harlequin ladybird Harmonia axyridis at five time points after feeding on a single pea aphid Acyrthosiphon pisum. Sequence reads were matched to three reference databases: Insecta mitogenomes of 587 species, including H. axyridis sequenced here; A. pisum nuclear genome scaffolds; and scaffolds and complete genomes of 13 potential bacterial symbionts. Immediately after feeding, multicopy mtDNA of A. pisum was detected in tens of reads, while hundreds of matches to nuclear scaffolds were detected. Aphid nuclear DNA and mtDNA decayed at similar rates (0.281 and 0.11 h1 respectively), and the detectability periods were 32.7 and 23.1 h. Metagenomic sequencing also revealed thousands of reads of the obligate Buchnera aphidicola and facultative Regiella insecticola aphid symbionts, which showed exponential decay rates significantly faster than aphid DNA (0.694 and 0.80 h 1, respectively). However, the facultative aphid symbionts Hamiltonella defensa, Arsenophonus spp. and Serratia symbiotica showed an unexpected temporary increase in population size by 1?2 orders of magnitude in the predator guts before declining. Metagenomics is a powerful tool that can reveal complex relationships and the dynamics of interactions among predators, prey and their symbionts

    Systemic and sex-biased regulation of OBP expression under semiochemical stimuli.

    Get PDF
    Abstract Constitutive expression of Odorant-Binding Proteins (OBPs) in antennae and other body parts has been examined mainly to infer their involvement in insect olfaction, while their regulation in response to semiochemical stimuli has remained poorly known. Previous studies of semiochemical response were basically done using electrophysiology, which integrates the response of the set of OBPs present in an antenna or sensillum, without revealing the regulation of OBPs or which ones might be involved. In this study we used boll weevil as a model and mined its OBPs by RNA-Seq to study their simultaneous antennal expression by qPCR under controlled semiochemical stimuli with aggregation pheromone and plant volatiles. In the absence of a semiochemical stimulus, 23 of 24 OBPs were constitutively expressed in the antenna in both sexes. Semiochemicals changed systemically the expression of OBPs in both sexes. There were different patterns of up- and down-regulation in female antennae for each semiochemical stimulus, consistent with female chemical ecology. On the other hand, the only response in males was down-regulation of some OBPs. We suggest that these systemic changes in OBP expression might be related to enhancing detection of the semiochemical stimuli and/or priming the olfactory system to detect other environmental chemicals
    corecore