300 research outputs found

    Signed ring families and signed posets

    Get PDF
    The one-to-one correspondence between finite distributive lattices and finite partially ordered sets (posets) is a well-known theorem of G. Birkhoff. This implies a nice representation of any distributive lattice by its corresponding poset, where the size of the former (distributive lattice) is often exponential in the size of the underlying set of the latter (poset). A lot of engineering and economic applications bring us distributive lattices as a ring family of sets which is closed with respect to the set union and intersection. When it comes to a ring family of sets, the underlying set is partitioned into subsets (or components) and we have a poset structure on the partition. This is a set-theoretical variant of the Birkhoff theorem revealing the correspondence between finite ring families and finite posets on partitions of the underlying sets, which was pursued by Masao Iri around 1978, especially concerned with what is called the principal partition of discrete systems such as graphs, matroids, and polymatroids. In the present paper we investigate a signed-set version of the Birkhoff-Iri decomposition in terms of signed ring family, which corresponds to Reiner's result on signed posets, a signed counterpart of the Birkhoff theorem. We show that given a signed ring family, we have a signed partition of the underlying set together with a signed poset on the signed partition which represents the given signed ring family. This representation is unique up to certain reflections

    Visual Feedback Without Geometric Features Against Occlusion: A Walsh Basis

    Get PDF
    Date of Online Publication: 09 January 2018For a visual feedback without geometric features, this brief suggests to apply a basis made by the Walsh functions in order to reduce the off-line experimental cost. Depending on the resolution, the feedback is implementable and achieves the closed-loop stability of dynamical systems as long as the input-output linearity on matrix space exists. Remarkably, a part of the whole occlusion effects is rejected, and the remaining part is attenuated. The validity is confirmed by the experimental feedback for nonplanar sloshing

    Theoretical study on ultrafast intersystem crossing of chromium(III) acetylacetonate

    Get PDF
    In the relaxation process from the ^4T_[2g] state of chromium(III) acetylacetonate, Cr^III(acac)_3, ultrafast intersystem crossing (ISC) competes with vibrational relaxation (VR). This contradicts the conventional cascade model, where ISC rates are slower than VR ones. We hence investigate the relaxation process with quantum chemical calculations and excited-state wavepacket simulations to obtain clues about the origins of the ultrafast ISC. It is found that a potential energy curve of the ^4T_[2g] state crosses those of the ^2T_[1g] states near the Franck–Condon region and their spin–orbit couplings are strong. Consequently, ultrafast ISC between these states is observed in the wavepacket simulation

    Moderate repulsive effects of E-unit-containing chondroitin sulfate (CSE) on behavior of retinal growth cones

    Get PDF
    Chondroitin sulfate (CS), the carbohydrate chain of chondroitin sulfate proteoglycans, is involved in neuronal circuit formation during development. CS shows great structural diversity with combination of disaccharide units of different structure (A-, C-, D-, or Eunit).However, whether its structural diversity contributes to pathway formation remains unclear. We chemically coupled the reducing end of various types of CS to the amino group of phosphatidylethanolamine (lipid-derivatized CS, CS-PE) and established an in vitro time-lapse assay to observe the behaviors of growth cones of retinal ganglion cells from embryonic day 6 chick retina on exposure to beads coated with lipid-derivatized CS (CS-PE beads). Among CS-PEs with different content of the structural units, the beads coated with E-unit–containing CS-PE [E-unit: GlcAβ1-3GalNAc(4,6-O-disulfate)] (CSE-PE beads) significantly caused the growth cones to retract and to turn away from the beads, but the beads coated with CSA-, CSC- or CSDPE beads did not. Importantly, not all the growth cones retracted equally from the CSE-PE beads, but they showed continuum of the repulsive behaviors; some behaved moderately and others remarkably. The growth cones distinguished different samples of CS: CSE and the others. Moreover, the continuum of the repulsive behaviors suggests that CS might be involved with the fine regulation of growth cones\u27 behavior through its characteristic structure

    Isolation and gene analysis of interferon α-resistant cell clones of the hepatitis C virus subgenome

    Get PDF
    AbstractHepatitis C virus (HCV) proteins appear to play an important role in IFN-resistance, but the molecular mechanism remains unclear. To clarify the mechanism in HCV replicon RNA harboring Huh-7 cells (Huh-9-13), we isolated cellular clones with impaired IFNα-sensitivity. Huh-9-13 was cultured for approximately 2 months in the presence of IFNα, and 4 IFNα-resistant cell clones showing significant resistances were obtained. When total RNA from clones was introduced into Huh-7 cells, the transfected cells also exhibited IFNα-resistance. Although no common mutations were present, mutations in NS3 and NS5A regions were accumulated. Transactivation of IFNα and IFNα-stimulated Stat-1 phosphorylation were reduced, and the elimination of HCV replicon RNA from the clones restored the IFNα signaling. These results suggest that the mutations in the HCV replicon RNA, at least in part, cause an inhibition of IFN signaling and are important for acquisition of IFNα resistance in Huh-9-13

    Tissue factor expression in human pterygium

    Get PDF
    Purpose: A pterygium shows tumor-like characteristics, such as proliferation, invasion, and epithelial–mesenchymal transition (EMT). Previous reports suggest that tissue factor (TF) expression is closely related to the EMT of tumor cells, and subsequent tumor development. In this study, we analyzed the expression and immunolocalization of TF in pterygial and normal conjunctival tissues of humans. Methods: Eight pterygia and three normal bulbar conjunctivas, surgically removed, were used in this study. Formalinfixed, paraffin-embedded tissues were submitted for immunohistochemical analysis with anti-TF antibody. Double staining immunohistochemistry was performed to assess TF and alpha-smooth muscle actin (α-SMA) or epidermal growth factor receptor (EGFR) expression in the pterygia. Results: Immunoreactivity for TF was detected in all pterygial tissues examined. TF immunoreactivity was localized in the cytoplasm of basal, suprabasal, and superficial epithelial cells. The number of TF-immunopositive cells in pterygial epithelial cells was significantly higher than in normal conjunctival epithelial cells (p<0.001). TF immunoreactivity was detected in α-SMA-positive or -negative pterygial epithelial cells. EGFR immunoreactivity was detected in pterygial epithelium, which was colocalized with TF. Conclusions: These results suggest that TF plays a potential role in the pathogenesis and development of a pterygium, and that TF expression might be involved through EMT-dependent and -independent pathways
    corecore