149 research outputs found

    Neonatal screening and selective sonographic imaging in the diagnosis of developmental dysplasia of the hip

    Get PDF
    Aims The aim of this prospective cohort study was to evaluate the effectiveness of the neonatal hip instability screening programme. Patients and Methods The study involved a four-year observational assessment of a neonatal hip screening programme. All newborns were examined using the Barlow or Ortolani manoeuvre within 72 hours of birth; those with positive findings were referred to a 'one-stop' screening clinic for clinical and sonographic assessment of the hip. The results were compared with previous published studies from this unit. Results A total of 124 newborns with a positive Barlow or Ortolani manoeuvre, clunk positive, or 'unstable' were referred. Five were found to have clinical instability of the hip. Sonographically, 92 newborns had Graf Type I hips, 12 had Graf Type II hips, and 20 had Graf Type IV hips. The positive predictive value (PPV) of clinical screening was 4.0% and the PPV of sonography was 16.1%. This has led to an increased rate of surgery for DDH. Conclusion Compared with previously published ten-year and 15-year studies, there has been a marked deterioration in the PPV in those referred with potential instability of the hip. There appears to be a paradox, with rising referrals and a decreasing PPV combined with an increasing rate of surgery in newborns with developmental dysplasia of the hip. Cite this article: Bone Joint J 2018;100-B:806-10

    Epstein-Barr Virus Latency in B Cells Leads to Epigenetic Repression and CpG Methylation of the Tumour Suppressor Gene Bim

    Get PDF
    In human B cells infected with Epstein-Barr virus (EBV), latency-associated virus gene products inhibit expression of the proapoptotic Bcl-2-family member Bim and enhance cell survival. This involves the activities of the EBV nuclear proteins EBNA3A and EBNA3C and appears to be predominantly directed at regulating Bim mRNA synthesis, although post-transcriptional regulation of Bim has been reported. Here we show that protein and RNA stability make little or no contribution to the EBV-associated repression of Bim in latently infected B cells. However, treatment of cells with inhibitors of histone deacetylase (HDAC) and DNA methyltransferase (DNMT) enzymes indicated that epigenetic mechanisms are involved in the down-regulation of Bim. This was initially confirmed by chromatin immunoprecipitation analysis of histone acetylation levels on the Bim promoter. Consistent with this, methylation-specific PCR (MSP) and bisulphite sequencing of regions within the large CpG island located at the 59 end of Bim revealed significant methylation of CpG dinucleotides in all EBV-positive, but not EBV-negative B cells examined. Genomic DNA samples exhibiting methylation of the Bim promoter included extracts from a series of explanted EBV-positive Burkitt’s lymphoma (BL) biopsies. Subsequent analyses of the histone modification H3K27-Me3 (trimethylation of histone H3 lysine 27) and CpG methylation at loci throughout the Bim promoter suggest that in EBV-positive B cells repression of Bim is initially associated with this repressive epigenetic histone mark gradually followed by DNA methylation at CpG dinucleotides. We conclude that latent EBV initiates a chain of events that leads to epigenetic repression of the tumour suppressor gene Bim in infected B cells and their progeny. This reprogramming of B cells could have important implications for our understanding of EBV persistence and the pathogenesis of EBV-associated disease, in particular BL

    Upregulation of the cell-cycle regulator RGC-32 in Epstein-Barr virus-immortalized cells

    Get PDF
    Epstein-Barr virus (EBV) is implicated in the pathogenesis of multiple human tumours of lymphoid and epithelial origin. The virus infects and immortalizes B cells establishing a persistent latent infection characterized by varying patterns of EBV latent gene expression (latency 0, I, II and III). The CDK1 activator, Response Gene to Complement-32 (RGC-32, C13ORF15), is overexpressed in colon, breast and ovarian cancer tissues and we have detected selective high-level RGC-32 protein expression in EBV-immortalized latency III cells. Significantly, we show that overexpression of RGC-32 in B cells is sufficient to disrupt G2 cell-cycle arrest consistent with activation of CDK1, implicating RGC-32 in the EBV transformation process. Surprisingly, RGC-32 mRNA is expressed at high levels in latency I Burkitt's lymphoma (BL) cells and in some EBV-negative BL cell-lines, although RGC-32 protein expression is not detectable. We show that RGC-32 mRNA expression is elevated in latency I cells due to transcriptional activation by high levels of the differentially expressed RUNX1c transcription factor. We found that proteosomal degradation or blocked cytoplasmic export of the RGC-32 message were not responsible for the lack of RGC-32 protein expression in latency I cells. Significantly, analysis of the ribosomal association of the RGC-32 mRNA in latency I and latency III cells revealed that RGC-32 transcripts were associated with multiple ribosomes in both cell-types implicating post-initiation translational repression mechanisms in the block to RGC-32 protein production in latency I cells. In summary, our results are the first to demonstrate RGC-32 protein upregulation in cells transformed by a human tumour virus and to identify post-initiation translational mechanisms as an expression control point for this key cell-cycle regulator

    3,3′-Diindolylmethane Induces G1 Arrest and Apoptosis in Human Acute T-Cell Lymphoblastic Leukemia Cells

    Get PDF
    Certain bioactive food components, including indole-3-carbinol (I3C) and 3,3′-diindolylmethane (DIM) from cruciferous vegetables, have been shown to target cellular pathways regulating carcinogenesis. Previously, our laboratory showed that dietary I3C is an effective transplacental chemopreventive agent in a dibenzo[def,p]chrysene (DBC)-dependent model of murine T-cell lymphoblastic lymphoma. The primary objective of the present study was to extend our chemoprevention studies in mice to an analogous human neoplasm in cell culture. Therefore, we tested the hypothesis that I3C or DIM may be chemotherapeutic in human T-cell acute lymphoblastic leukemia (T-ALL) cells. Treatment of the T-ALL cell lines CCRF-CEM, CCRF-HSB2, SUP-T1 and Jurkat with DIM in vitro significantly reduced cell proliferation and viability at concentrations 8- to 25-fold lower than the parent compound I3C. DIM (7.5 µM) arrested CEM and HSB2 cells at the G1 phase of the cell cycle and 15 µM DIM significantly increased the percentage of apoptotic cells in all T-ALL lines. In CEM cells, DIM reduced protein expression of cyclin dependent kinases 4 and 6 (CDK4, CDK6) and D-type cyclin 3 (CCND3); DIM also significantly altered expression of eight transcripts related to human apoptosis (BCL2L10, CD40LG, HRK, TNF, TNFRSF1A, TNFRSF25, TNFSF8, TRAF4). Similar anticancer effects of DIM were observed in vivo. Dietary exposure to 100 ppm DIM significantly decreased the rate of growth of human CEM xenografts in immunodeficient SCID mice, reduced final tumor size by 44% and increased the apoptotic index compared to control-fed mice. Taken together, our results demonstrate a potential for therapeutic application of DIM in T-ALL

    Modulation of enhancer looping and differential gene targeting by Epstein-Barr virus transcription factors directs cellular reprogramming

    Get PDF
    Epstein-Barr virus (EBV) epigenetically reprogrammes B-lymphocytes to drive immortalization and facilitate viral persistence. Host-cell transcription is perturbed principally through the actions of EBV EBNA 2, 3A, 3B and 3C, with cellular genes deregulated by specific combinations of these EBNAs through unknown mechanisms. Comparing human genome binding by these viral transcription factors, we discovered that 25% of binding sites were shared by EBNA 2 and the EBNA 3s and were located predominantly in enhancers. Moreover, 80% of potential EBNA 3A, 3B or 3C target genes were also targeted by EBNA 2, implicating extensive interplay between EBNA 2 and 3 proteins in cellular reprogramming. Investigating shared enhancer sites neighbouring two new targets (WEE1 and CTBP2) we discovered that EBNA 3 proteins repress transcription by modulating enhancer-promoter loop formation to establish repressive chromatin hubs or prevent assembly of active hubs. Re-ChIP analysis revealed that EBNA 2 and 3 proteins do not bind simultaneously at shared sites but compete for binding thereby modulating enhancer-promoter interactions. At an EBNA 3-only intergenic enhancer site between ADAM28 and ADAMDEC1 EBNA 3C was also able to independently direct epigenetic repression of both genes through enhancer-promoter looping. Significantly, studying shared or unique EBNA 3 binding sites at WEE1, CTBP2, ITGAL (LFA-1 alpha chain), BCL2L11 (Bim) and the ADAMs, we also discovered that different sets of EBNA 3 proteins bind regulatory elements in a gene and cell-type specific manner. Binding profiles correlated with the effects of individual EBNA 3 proteins on the expression of these genes, providing a molecular basis for the targeting of different sets of cellular genes by the EBNA 3s. Our results therefore highlight the influence of the genomic and cellular context in determining the specificity of gene deregulation by EBV and provide a paradigm for host-cell reprogramming through modulation of enhancer-promoter interactions by viral transcription factors

    Latent Epstein-Barr Virus Can Inhibit Apoptosis in B Cells by Blocking the Induction of NOXA Expression

    Get PDF
    Latent Epstein-Barr virus (EBV) has been shown to protect Burkitt's lymphoma-derived B cells from apoptosis induced by agents that cause damage to DNA, in the context of mutant p53. This protection requires expression of the latency-associated nuclear proteins EBNA3A and EBNA3C and correlates with their ability to cooperate in the repression of the gene encoding the pro-apoptotic, BH3-only protein BIM. Here we confirm that latent EBV in B cells also inhibits apoptosis induced by two other agents – ionomycin and staurosporine – and show that these act by a distinct pathway that involves a p53-independent increase in expression of another pro-apoptotic, BH3-only protein, NOXA. Analyses employing a variety of B cells infected with naturally occurring EBV or B95.8 EBV-BAC recombinant mutants indicated that the block to NOXA induction does not depend on the well-characterized viral latency-associated genes (EBNAs 1, 2, 3A, 3B, 3C, the LMPs or the EBERs) or expression of BIM. Regulation of NOXA was shown to be at least partly at the level of mRNA and the requirement for NOXA to induce cell death in this context was demonstrated by NOXA-specific shRNA-mediated depletion experiments. Although recombinant EBV with a deletion removing the BHRF1 locus – that encodes the BCL2-homologue BHRF1 and three microRNAs – partially abrogates protection against ionomycin and staurosporine, the deletion has no effect on the EBV-mediated block to NOXA accumulation

    Loss of Let-7 Up-Regulates EZH2 in Prostate Cancer Consistent with the Acquisition of Cancer Stem Cell Signatures That Are Attenuated by BR-DIM

    Get PDF
    The emergence of castrate-resistant prostate cancer (CRPC) contributes to the high mortality of patients diagnosed with prostate cancer (PCa), which in part could be attributed to the existence and the emergence of cancer stem cells (CSCs). Recent studies have shown that deregulated expression of microRNAs (miRNAs) contributes to the initiation and progression of PCa. Among several known miRNAs, let-7 family appears to play a key role in the recurrence and progression of PCa by regulating CSCs; however, the mechanism by which let-7 family contributes to PCa aggressiveness is unclear. Enhancer of Zeste homolog 2 (EZH2), a putative target of let-7 family, was demonstrated to control stem cell function. In this study, we found loss of let-7 family with corresponding over-expression of EZH2 in human PCa tissue specimens, especially in higher Gleason grade tumors. Overexpression of let-7 by transfection of let-7 precursors decreased EZH2 expression and repressed clonogenic ability and sphere-forming capacity of PCa cells, which was consistent with inhibition of EZH2 3′UTR luciferase activity. We also found that the treatment of PCa cells with BR-DIM (formulated DIM: 3,3′-diindolylmethane by Bio Response, Boulder, CO, abbreviated as BR-DIM) up-regulated let-7 and down-regulated EZH2 expression, consistent with inhibition of self-renewal and clonogenic capacity. Moreover, BR-DIM intervention in our on-going phase II clinical trial in patients prior to radical prostatectomy showed upregulation of let-7 consistent with down-regulation of EZH2 expression in PCa tissue specimens after BR-DIM intervention. These results suggest that the loss of let-7 mediated increased expression of EZH2 contributes to PCa aggressiveness, which could be attenuated by BR-DIM treatment, and thus BR-DIM is likely to have clinical impact

    Tonian-Cryogenian boundary sections of Argyll, Scotland

    Get PDF
    The Tonian-Cryogenian System boundary is to be defined at a GSSP (Global Boundary Stratigraphic Section and Point) beneath the first evidence of widespread glaciation. A candidate lies within the Dalradian Supergroup of Scotland and Ireland, which is least deformed and metamorphosed in Argyll, western Scotland. We present new stratigraphic profiles and interpretations from the Isle of Islay and the Garvellach Islands, update the chemostratigraphy of the Appin Group Tonian carbonates underlying the thick (ca. 1. km) glacigenic Port Askaig Formation (PAF) and demonstrate an environmental transition at the contact.The Appin Group forms a regionally extensive, > 4km-thick, succession of limestones, shales and sandstones deposited on a marine shelf. On Islay, the upper part of the lithostratigraphy has been clarified by measuring and correlating two sections containing distinctive stratigraphic levels including molar tooth structure, oolite, stromatolitic dolomite and intraclastic microbial mounds. Significantly deeper erosion at the unconformity at the base of the overlying PAF is demonstrated in the southern section. Carbonate facies show a gradual decline in δ 13 C VPDB from +5 to +2‰ upwards.In NE Garbh Eileach (Garvellach Islands), a continuously exposed section of Appin Group carbonates, 70m thick, here designated the Garbh Eileach Formation (GEF), lies conformably beneath the PAF. The GEF and the GEF-PAF boundary relationships are re-described with new sedimentological logs, petrological and stable isotope data. Interstratified limestone and dolomicrosparite with δ 13 C of -4 to -7‰ (a feature named the Garvellach anomaly, replacing the term Islay anomaly) are overlain by dolomite in which the isotope signature becomes weakly positive (up to +1‰) upwards. Shallow subtidal conditions become peritidal upwards, with evidence of wave and storm activity. Gypsum pseudomorphs and subaerial exposure surfaces are common near the top of the GEF. The basal diamictite (D1) of the PAF is rich in carbonate clasts similar to slightly deeper-water parts of the underlying succession. D1 is typically several metres thick with interstratified sandstone and conglomerate, but dies out laterally. Scattered siliciclastic coarse sandstone to pebble conglomerate with dropstones associated with soft-sediment deformation is interbedded with carbonate below and above D1. Dolomite beds with derived intraclasts and gypsum pseudomorphs are found above D1 (or equivalent position, where D1 is absent).Published and new Sr isotope studies, including successive leach data, demonstrate primary Tonian 87 Sr/ 86 Sr values of 0.7066-0.7069 on Islay, decreasing to 0.7064-0.7066 in the younger GEF limestones on the Garvellachs, with 1700-2700ppmSr. Other typically Tonian characteristics of the carbonates are the Sr-rich nature of limestones, molar tooth structure, and dolomitized peritidal facies with evidence of aridity. Seabed surveys suggesting uniformly-dipping strata and shallow borehole core material illustrate the potential for extending the Tonian record offshore of the Garvellachs.A candidate Tonian-Cryogenian GSSP is proposed on Garbh Eileach within the smooth δ 13 C profile at the cross-over to positive δ 13 C signatures, 4m below the first occurrence of ice-rafted sediment and 9m below the first diamictite. Although lacking radiometric constraints or stratigraphically significant biotas or biomarkers, the Scottish succession has a thick and relatively complete sedimentary record of glaciation, coherent carbon and strontium chemostratigraphy, lateral continuity of outcrops and 100% exposure at the proposed boundary interval

    Like Mother(-in-Law) Like Daughter? Influence of the Older Generation’s Fertility Behaviours on Women’s Desired Family Size in Bihar, India

    Get PDF
    This paper investigates the associations between preferred family size of women in rural Bihar, India and the fertility behaviours of their mother and mother-in-law. Scheduled interviews of 440 pairs of married women aged 16–34 years and their mothers-in-law were conducted in 2011. Preferred family size is first measured by Coombs scale, allowing us to capture latent desired number of children and then categorized into three categories (low, medium and high). Women’s preferred family size is estimated using ordered logistic regression. We find that the family size preferences are not associated with mother’s fertility but with mother’s education. Mother-in-law’s desired number of grandchildren is positively associated with women’s preferred family size. However, when the woman has higher education than her mother-in-law, her preferred family size gets smaller, suggesting that education provides women with greater autonomy in their decision-making on childbearing

    Identification of epigenetically regulated genes that predict patient outcome in neuroblastoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Epigenetic mechanisms such as DNA methylation and histone modifications are important regulators of gene expression and are frequently involved in silencing tumor suppressor genes.</p> <p>Methods</p> <p>In order to identify genes that are epigenetically regulated in neuroblastoma tumors, we treated four neuroblastoma cell lines with the demethylating agent 5-Aza-2'-deoxycytidine (5-Aza-dC) either separately or in conjunction with the histone deacetylase inhibitor trichostatin A (TSA). Expression was analyzed using whole-genome expression arrays to identify genes activated by the treatment. These data were then combined with data from genome-wide DNA methylation arrays to identify candidate genes silenced in neuroblastoma due to DNA methylation.</p> <p>Results</p> <p>We present eight genes (<it>KRT19</it>, <it>PRKCDBP</it>, <it>SCNN1A</it>, <it>POU2F2</it>, <it>TGFBI</it>, <it>COL1A2</it>, <it>DHRS3 </it>and <it>DUSP23</it>) that are methylated in neuroblastoma, most of them not previously reported as such, some of which also distinguish between biological subsets of neuroblastoma tumors. Differential methylation was observed for the genes <it>SCNN1A </it>(p < 0.001), <it>PRKCDBP </it>(p < 0.001) and <it>KRT19 </it>(p < 0.01). Among these, the mRNA expression of <it>KRT19 </it>and <it>PRKCDBP </it>was significantly lower in patients that have died from the disease compared with patients with no evidence of disease (fold change -8.3, p = 0.01 for <it>KRT19 </it>and fold change -2.4, p = 0.04 for <it>PRKCDBP</it>).</p> <p>Conclusions</p> <p>In our study, a low methylation frequency of <it>SCNN1A</it>, <it>PRKCDBP </it>and <it>KRT19 </it>is significantly associated with favorable outcome in neuroblastoma. It is likely that analysis of specific DNA methylation will be one of several methods in future patient therapy stratification protocols for treatment of childhood neuroblastomas.</p
    • …
    corecore