7,048 research outputs found

    Neural Filters for Jet Analysis

    Full text link
    We study the efficiency of a neural-net filter and deconvolution method for estimating jet energies and spectra in high-background reactions such as nuclear collisions at the relativistic heavy-ion collider and the large hadron collider. The optimal network is shown to be surprisingly close but not identical to a linear high-pass filter. A suitably constrained deconvolution method is shown to uncover accurately the underlying jet distribution in spite of the broad network response. Finally, we show that possible changes of the jet spectrum in nuclear collisions can be analyzed quantitatively, in terms of an effective energy loss with the proposed method. {} {Dong D W and Gyulassy M 1993}{Neural filters for jet analysis} {(LBL-31560) Physical Review E Vol~47(4) pp~2913-2922}Comment: 21 pages of Postscript, (LBL-31560

    Anti-Hyperon Enhancement through Baryon Junction Loops

    Get PDF
    The baryon junction exchange mechanism recently proposed to explain valence baryon number transport in nuclear collisions is extended to study midrapidity anti-hyperon production. Baryon junction-anti-junction (J anti-J) loops are shown to enhance anti-Lambda, anti-Xi, anti-Omega yields as well as lead to long range rapidity correlations. Results are compared to recent WA97 Pb + Pb -> Y + anti-Y + X data.Comment: 10 pages, 4 figure

    Second Stage String Fragmentation Model

    Get PDF
    A string model, advocated by Bowler, provides a physical and intuitive picture of heavy quark fragmentation. When supplemented by an ad hoc factor of (1-z), to suppress fragmentation near z=1, it supplies an excellent fit to the data. We extend Bowler's model by accounting for the further decay of the massive mesonic states produced by the initial string breaking. We find that each subsequent string break and cascade decay beyond the first, introduces a factor of (1-z). Furthermore we find that including a finite mass for the quarks, which pop out of the vacuum and split the string, forces the first string breaking to produce massive states requiring further decay. This sequence terminates at the second stage of fragmentation where only relatively "light" heavy meson systems are formed. Thus we naturally account for the phenomenologically required factor of (1-z). We also predict that the ratio of (primary) fragments-vector/(vector plus scalar) should be .61. Our second stage string fragmentation model provides an appealing picture of heavy quark fragmentation.Comment: 15 page

    Models for the magnetic ac susceptibility of granular superferromagnetic CoFe/Al2_2O3_3

    Full text link
    The magnetization and magnetic ac susceptibility, χ=χiχ\chi = \chi' - i \chi'', of superferromagnetic systems are studied by numerical simulations. The Cole-Cole plot, χ\chi'' vs. χ\chi', is used as a tool for classifying magnetic systems by their dynamical behavior. The simulations of the magnetization hysteresis and the ac susceptibility are performed with two approaches for a driven domain wall in random media. The studies are motivated by recent experimental results on the interacting nanoparticle system Co80_{80}Fe20_{20}/Al2_{2}O3_{3} showing superferromagnetic behavior. Its Cole-Cole plot indicates domain wall motion dynamics similarly to a disordered ferromagnet, including pinning and sliding motion. With our models we can successfully reproduce the features found in the experimental Cole-Cole plots.Comment: 8 pages, 6 figure

    Penrose type inequalities for asymptotically hyperbolic graphs

    Full text link
    In this paper we study asymptotically hyperbolic manifolds given as graphs of asymptotically constant functions over hyperbolic space \bH^n. The graphs are considered as subsets of \bH^{n+1} and carry the induced metric. For such manifolds the scalar curvature appears in the divergence of a 1-form involving the integrand for the asymptotically hyperbolic mass. Integrating this divergence we estimate the mass by an integral over an inner boundary. In case the inner boundary satisfies a convexity condition this can in turn be estimated in terms of the area of the inner boundary. The resulting estimates are similar to the conjectured Penrose inequality for asymptotically hyperbolic manifolds. The work presented here is inspired by Lam's article concerning the asymptotically Euclidean case.Comment: 29 pages, no figure, includes a proof of the equality cas

    Interplay between the Reorientational Dynamics of the B3H8- Anion and the Structure in KB3H8

    Get PDF
    The structure and reorientational dynamics of KB3H8 were studied by using quasielastic and inelastic neutron scattering, Raman spectroscopy, first-principles calculations, differential scanning calorimetry, and in situ synchrotron radiation powder X-ray diffraction. The results reveal the existence of a previously unknown polymorph in between the alpha\u27- and beta-polymorphs. Furthermore, it was found that the [B3H8](-) anion undergoes different reorientational motions in the three polymorphs alpha, alpha\u27, and beta. In alpha-KB3H8, the [B3H8](-) anion performs 3-fold rotations in the plane created by the three boron atoms, which changes to a 2-fold rotation around the C-2 symmetry axis of the [B3H8](-) anion upon transitioning to alpha\u27-KB3H8. After transitioning to beta-KB3H8, the [B3H8](-) anion performs 4-fold rotations in the plane created by the three boron atoms, which indicates that the local structure of beta-KB3H8 deviates from the global cubic NaCl-type structure. The results also indicate that the high reorientational mobility of the [B3H8](-) anion facilitates the K+ cation conductivity, since the 2-orders-of-magnitude increase in the anion reorientational mobility observed between 297 and 311 K coincides with a large increase in K+ conductivity

    Baryon Number Fluctuation and the Quark-Gluon Plasma

    Get PDF
    We show that ωB\omega_B or ωBˉ\omega_{\bar B}, the squared baryon or antibaryon number fluctuation per baryon or antibaryon, is a possible signature for the quark-gluon plasma that is expected to be created in relativistic heavy ion collisions, as it is a factor of three smaller than in an equilibrated hadronic matter due to the fractional baryon number of quarks. Using kinetic equations with exact baryon number conservation, we find that their values in an equilibrated matter are half of those expected from a Poisson distribution. Effects due to finite acceptance and non-zero net baryon number are also studied.Comment: discussion and references added, version to appear in PR

    Collision Dynamics and Solvation of Water Molecules in a Liquid Methanol Film

    Get PDF
    Environmental molecular beam experiments are used to examine water interactions with liquid methanol films at temperatures from 170 K to 190 K. We find that water molecules with 0.32 eV incident kinetic energy are efficiently trapped by the liquid methanol. The scattering process is characterized by an efficient loss of energy to surface modes with a minor component of the incident beam that is inelastically scattered. Thermal desorption of water molecules has a well characterized Arrhenius form with an activation energy of 0.47{\pm}0.11 eV and pre-exponential factor of 4.6 {\times} 10^(15{\pm}3) s^(-1). We also observe a temperature dependent incorporation of incident water into the methanol layer. The implication for fundamental studies and environmental applications is that even an alcohol as simple as methanol can exhibit complex and temperature dependent surfactant behavior.Comment: 8 pages, 5 figure

    Parton Equilibration in Relativistic Heavy Ion Collisions

    Get PDF
    We investigate the processes leading to phase-space equilibration of parton distributions in nuclear interactions at collider energies. We derive a set of rate equations describing the chemical equilibration of gluons and quarks including medium effects on the relevant QCD transport coefficients, and discuss their consequences for parton equilibration in heavy ion collisions.Comment: 18 pages, 6 Figures appended as uuencoded PostScript files, (no changes in the previously submitted manuscript), DUKE-TH-93-4
    corecore