21,687 research outputs found
Advective collisions
Small particles advected in a fluid can collide (and therefore aggregate) due
to the stretching or shearing of fluid elements. This effect is usually
discussed in terms of a theory due to Saffman and Turner [J. Fluid Mech., 1,
16-30, (1956)]. We show that in complex or random flows the Saffman-Turner
theory for the collision rate describes only an initial transient (which we
evaluate exactly). We obtain precise expressions for the steady-state collision
rate for flows with small Kubo number, including the influence of fractal
clustering on the collision rate for compressible flows. For incompressible
turbulent flows, where the Kubo number is of order unity, the Saffman-Turner
theory is an upper bound.Comment: 4 pages, 1 figur
Weighted integral formulas on manifolds
We present a method of finding weighted Koppelman formulas for -forms
on -dimensional complex manifolds which admit a vector bundle of rank
over , such that the diagonal of has a defining
section. We apply the method to \Pn and find weighted Koppelman formulas for
-forms with values in a line bundle over \Pn. As an application, we
look at the cohomology groups of -forms over \Pn with values in
various line bundles, and find explicit solutions to the \dbar-equation in
some of the trivial groups. We also look at cohomology groups of -forms
over \Pn \times \Pm with values in various line bundles. Finally, we apply
our method to developing weighted Koppelman formulas on Stein manifolds.Comment: 25 page
Event-by-event fluctuations of the charged particle ratio from non-equilibrium transport theory
The event by event fluctuations of the ratio of positively to negatively
charged hadrons are predicted within the UrQMD model. Corrections for finite
acceptance and finite net charge are derived. These corrections are relevant to
compare experimental data and transport model results to previous predictions.
The calculated fluctuations at RHIC and SPS energies are shown to be compatible
with a hadron gas. Thus, deviating by a factor of 3 from the predictions for a
thermalized quark-gluon plasma.Comment: This paper clarifies the previous predictions of Jeon and Koch
(hep-ph/0003168) and addresses issues raised in hep-ph/0006023. 2 Figures,
10pp, uses RevTe
The dynamics of dissipative multi-fluid neutron star cores
We present a Newtonian multi-fluid formalism for superfluid neutron star
cores, focussing on the additional dissipative terms that arise when one takes
into account the individual dynamical degrees of freedom associated with the
coupled "fluids". The problem is of direct astrophysical interest as the nature
of the dissipative terms can have significant impact on the damping of the
various oscillation modes of the star and the associated gravitational-wave
signatures. A particularly interesting application concerns the
gravitational-wave driven instability of f- and r-modes. We apply the developed
formalism to two specific three-fluid systems: (i) a hyperon core in which both
Lambda and Sigma^- hyperons are present, and (ii) a core of deconfined quarks
in the colour-flavour-locked phase in which a population of neutral K^0 kaons
is present. The formalism is, however, general and can be applied to other
problems in neutron-star dynamics (such as the effect of thermal excitations
close to the superfluid transition temperature) as well as laboratory
multi-fluid systems.Comment: RevTex, no figure
The Feynman-Wilson gas and the Lund model
We derive a partition function for the Lund fragmentation model and compare
it with that of a classical gas. For a fixed rapidity ``volume'' this partition
function corresponds to a multiplicity distribution which is very close to a
binomial distribution. We compare our results with the multiplicity
distributions obtained from the JETSET Monte Carlo for several scenarios.
Firstly, for the fragmentation vertices of the Lund string. Secondly, for the
final state particles both with and without decays.Comment: Latex, 21+1 pages, 11 figure
A Relativistic Mean Field Model for Entrainment in General Relativistic Superfluid Neutron Stars
General relativistic superfluid neutron stars have a significantly more
intricate dynamics than their ordinary fluid counterparts. Superfluidity allows
different superfluid (and superconducting) species of particles to have
independent fluid flows, a consequence of which is that the fluid equations of
motion contain as many fluid element velocities as superfluid species. Whenever
the particles of one superfluid interact with those of another, the momentum of
each superfluid will be a linear combination of both superfluid velocities.
This leads to the so-called entrainment effect whereby the motion of one
superfluid will induce a momentum in the other superfluid. We have constructed
a fully relativistic model for entrainment between superfluid neutrons and
superconducting protons using a relativistic mean field model
for the nucleons and their interactions. In this context there are two notions
of ``relativistic'': relativistic motion of the individual nucleons with
respect to a local region of the star (i.e. a fluid element containing, say, an
Avogadro's number of particles), and the motion of fluid elements with respect
to the rest of the star. While it is the case that the fluid elements will
typically maintain average speeds at a fraction of that of light, the
supranuclear densities in the core of a neutron star can make the nucleons
themselves have quite high average speeds within each fluid element. The
formalism is applied to the problem of slowly-rotating superfluid neutron star
configurations, a distinguishing characteristic being that the neutrons can
rotate at a rate different from that of the protons.Comment: 16 pages, 5 figures, submitted to PR
Revival of quantum correlations without system-environment back-action
Revivals of quantum correlations have often been explained in terms of
back-action on quantum systems by their quantum environment(s). Here we
consider a system of two independently evolving qubits, each locally
interacting with a classical random external field. The environments of the
qubits are also independent, and there is no back-action on the qubits.
Nevertheless, entanglement, quantum discord and classical correlations between
the two qubits may revive in this model. We explain the revivals in terms of
correlations in a classical-quantum state of the environments and the qubits.
Although classical states cannot store entanglement on their own, they can play
a role in storing and reviving entanglement. It is important to know how the
absence of back-action, or modelling an environment as classical, affects the
kind of system time evolutions one is able to describe. We find a class of
global time evolutions where back-action is absent and for which there is no
loss of generality in modelling the environment as classical. Finally, we show
that the revivals can be connected with the increase of a parameter used to
quantify non-Markovianity of the single-qubit dynamics.Comment: 8 pages, 4 figures; this version to appear in Phys. Rev.
Relativistic Two-stream Instability
We study the (local) propagation of plane waves in a relativistic,
non-dissipative, two-fluid system, allowing for a relative velocity in the
"background" configuration. The main aim is to analyze relativistic two-stream
instability. This instability requires a relative flow -- either across an
interface or when two or more fluids interpenetrate -- and can be triggered,
for example, when one-dimensional plane-waves appear to be left-moving with
respect to one fluid, but right-moving with respect to another. The dispersion
relation of the two-fluid system is studied for different two-fluid equations
of state: (i) the "free" (where there is no direct coupling between the fluid
densities), (ii) coupled, and (iii) entrained (where the fluid momenta are
linear combinations of the velocities) cases are considered in a
frame-independent fashion (eg. no restriction to the rest-frame of either
fluid). As a by-product of our analysis we determine the necessary conditions
for a two-fluid system to be causal and absolutely stable and establish a new
constraint on the entrainment.Comment: 15 pages, 2 eps-figure
Non-adiabatic holonomic quantum computation
We develop a non-adiabatic generalization of holonomic quantum computation in
which high-speed universal quantum gates can be realized by using non-Abelian
geometric phases. We show how a set of non-adiabatic holonomic one- and
two-qubit gates can be implemented by utilizing optical transitions in a
generic three-level configuration. Our scheme opens up for universal
holonomic quantum computation on qubits characterized by short coherence times.Comment: Some changes, journal reference adde
- …