64 research outputs found

    Synergistic interaction in simultaneous exposure to Streptomyces californicus and Stachybotrys chartarum.

    Get PDF
    The microbial exposure associated with health complaints in moldy houses consists of a heterogeneous group of components, including both living and dead bacteria, fungi, and their metabolites and active compounds. However, little is known about the interactions between different microbes and their metabolites, although the cytotoxicity and inflammatory potential of certain individual microbes have been reported. In this study, we investigated the inflammatory responses of mouse RAW264.7 macrophages after exposure to six indoor air microbes (Aspergillus versicolor, Penicillium spinulosum, Stachybotrys chartarum, Bacillus cereus, Mycobacterium terrae, and Pseudomonas fluorescens) alone and together with the actinomycete Streptomyces californicus. The production of nitric oxide, levels of the proinflammatory cytokines tumor necrosis factor alpha (TNF-alpha) and interleukin-6 (IL-6), and cytotoxicity were measured. The coexposure to Sta. chartarum and Str. californicus caused a synergistic increase in the production of IL-6 but not other cytokines. In further experiments, the metabolites from Sta. chartarum or from closely related fungi (atranones B and E, satratoxin G, trichodermin, 7-alpha-hydroxytrichodermol, staplabin, and SMTP-7) and the known fungal toxins sterigmatocystin, citrinin, and ochratoxin A were each tested with Str. californicus. The testing revealed a synergistic response in TNF-alpha and IL-6 production after coexposure to Str. californicus with both trichodermin and 7-alpha-hydroxytrichodermol. Finally, the synergistic inflammatory response caused by Str. californicus and trichodermin together was studied by analyzing for the presence of nuclear factor-kappa-B (NF-kappa-B) in nuclear extracts of the exposed cells. The exposure to Str. californicus induced the binding of NF-kappa-B proteins to the NF-kappa-B consensus sequence as well as to the natural NF-kappa-B site of the IL-6 promoter. Adding trichodermin to the exposure did not increase the DNA binding

    Analysis of non-relapsed and relapsed adult type granulosa cell tumors suggests stable transcriptomes during tumor progression

    Get PDF
    Adult-type granulosa cell tumor (AGCT) is a rare ovarian malignancy characterized by slow growth and hormonal activity. The prognosis of AGCT is generally favorable, but one-third of patients with low-stage disease experience a late relapse, and over half of them die of AGCT. To identify markers that would distinguish patients at risk for relapse, we performed Lexogen QuantSeq 3\u27 mRNA sequencing on formalin-fixed paraffin-embedded, archival AGCT tissue samples tested positive for the pathognomonic Forkhead Box L2

    Analysis of Non-Relapsed and Relapsed Adult Type Granulosa Cell Tumors Suggests Stable Transcriptomes during Tumor Progression

    Get PDF
    Adult-type granulosa cell tumor (AGCT) is a rare ovarian malignancy characterized by slow growth and hormonal activity. The prognosis of AGCT is generally favorable, but one-third of patients with low-stage disease experience a late relapse, and over half of them die of AGCT. To identify markers that would distinguish patients at risk for relapse, we performed Lexogen QuantSeq 3′ mRNA sequencing on formalin-fixed paraffin-embedded, archival AGCT tissue samples tested positive for the pathognomonic Forkhead Box L2 (FOXL2) mutation. We compared the transcriptomic profiles of 14 non-relapsed archival primary AGCTs (follow-up time 17–26 years after diagnosis) with 13 relapsed primary AGCTs (follow-up time 1.7–18 years) and eight relapsed tumors (follow-up time 2.8–18.9 years). Non-relapsed and relapsed primary AGCTs had similar transcriptomic profiles. In relapsed tumors three genes were differentially expressed: plasmalemma vesicle associated protein (PLVAP) was upregulated (p = 0.01), whereas argininosuccinate synthase 1 (ASS1) (p = 0.01) and perilipin 4 (PLIN4) (p = 0.02) were downregulated. PLVAP upregulation was validated using tissue microarray RNA in situ hybridization. In our patient cohort with extremely long follow-up, we observed similar gene expression patterns in both primary AGCT groups, suggesting that relapse is not driven by transcriptomic changes. These results reinforce earlier findings that molecular markers do not predict AGCT behavior or risk of relapse

    Analysis of Non-Relapsed and Relapsed Adult Type Granulosa Cell Tumors Suggests Stable Transcriptomes during Tumor Progression

    Get PDF
    Adult-type granulosa cell tumor (AGCT) is a rare ovarian malignancy characterized by slow growth and hormonal activity. The prognosis of AGCT is generally favorable, but one-third of patients with low-stage disease experience a late relapse, and over half of them die of AGCT. To identify markers that would distinguish patients at risk for relapse, we performed Lexogen QuantSeq 3′ mRNA sequencing on formalin-fixed paraffin-embedded, archival AGCT tissue samples tested positive for the pathognomonic Forkhead Box L2 (FOXL2) mutation. We compared the transcriptomic profiles of 14 non-relapsed archival primary AGCTs (follow-up time 17–26 years after diagnosis) with 13 relapsed primary AGCTs (follow-up time 1.7–18 years) and eight relapsed tumors (follow-up time 2.8–18.9 years). Non-relapsed and relapsed primary AGCTs had similar transcriptomic profiles. In relapsed tumors three genes were differentially expressed: plasmalemma vesicle associated protein (PLVAP) was upregulated (p = 0.01), whereas argininosuccinate synthase 1 (ASS1) (p = 0.01) and perilipin 4 (PLIN4) (p = 0.02) were downregulated. PLVAP upregulation was validated using tissue microarray RNA in situ hybridization. In our patient cohort with extremely long follow-up, we observed similar gene expression patterns in both primary AGCT groups, suggesting that relapse is not driven by transcriptomic changes. These results reinforce earlier findings that molecular markers do not predict AGCT behavior or risk of relapse

    Functional Profiling of FSH and Estradiol in Ovarian Granulosa Cell Tumors

    Get PDF
    Adult-type granulosa cell tumors (AGCTs) are sex-cord derived neoplasms with a propensity for late relapse. Hormonal modulators have been used empirically in the treatment of recurrent AGCT, albeit with limited success. To provide a more rigorous foundation for hormonal therapy in AGCT, we used a multi-modal approach to characterize the expressions of key hormone biomarkers in 175 tumor specimens and 51 serum samples using RNA sequencing, immunohistochemistry, RNA in situ hybridization, quantitative PCR, and circulating biomarker analysis, and correlated these results with clinical data. We show that FSH receptor and estrogen receptor beta (ER beta) are highly expressed in the majority of AGCTs, whereas the expressions of estrogen receptor alpha (ER alpha) and G-protein coupled estrogen receptor 1 are less prominent. ER beta protein expression is further increased in recurrent tumors. Aromatase expression levels show high variability between tumors. None of the markers examined served as prognostic biomarkers for progression-free or overall survival. In functional experiments, we assessed the effects of FSH, estradiol (E2), and the aromatase inhibitor letrozole on AGCT cell viability using 2 in vitro models: KGN cells and primary cultures of AGCT cells. FSH increased cell viability in a subset of primary AGCT cells, whereas E2 had no effect on cell viability at physiological concentrations. Letrozole suppressed E2 production in AGCTs; however, it did not impact cell viability. We did not find preclinical evidence to support the clinical use of aromatase inhibitors in AGCT treatment, and thus randomized, prospective clinical studies are needed to clarify the role of hormonal treatments in AGCTs. (C) Endocrine Society 2020.Peer reviewe
    • …
    corecore