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Abstract: Adult-type granulosa cell tumor (AGCT) is a rare ovarian malignancy characterized by
slow growth and hormonal activity. The prognosis of AGCT is generally favorable, but one-third
of patients with low-stage disease experience a late relapse, and over half of them die of AGCT. To
identify markers that would distinguish patients at risk for relapse, we performed Lexogen QuantSeq
3′ mRNA sequencing on formalin-fixed paraffin-embedded, archival AGCT tissue samples tested
positive for the pathognomonic Forkhead Box L2 (FOXL2) mutation. We compared the transcriptomic
profiles of 14 non-relapsed archival primary AGCTs (follow-up time 17–26 years after diagnosis) with
13 relapsed primary AGCTs (follow-up time 1.7–18 years) and eight relapsed tumors (follow-up time
2.8–18.9 years). Non-relapsed and relapsed primary AGCTs had similar transcriptomic profiles. In
relapsed tumors three genes were differentially expressed: plasmalemma vesicle associated protein
(PLVAP) was upregulated (p = 0.01), whereas argininosuccinate synthase 1 (ASS1) (p = 0.01) and
perilipin 4 (PLIN4) (p = 0.02) were downregulated. PLVAP upregulation was validated using tissue
microarray RNA in situ hybridization. In our patient cohort with extremely long follow-up, we
observed similar gene expression patterns in both primary AGCT groups, suggesting that relapse is
not driven by transcriptomic changes. These results reinforce earlier findings that molecular markers
do not predict AGCT behavior or risk of relapse.

Keywords: adult-type granulosa cell tumor; archival FFPE samples; transcriptomic profiling; tumor
heterogeneity; tumor evolution

1. Introduction

Adult-type granulosa cell tumor (AGCT) is a rare sex-cord stromal tumor that accounts
for 5% of ovarian malignancies [1]. AGCT is characterized by its slow growth pattern and
propensity for late relapse. AGCTs are typically hormonally active and the majority of
them produce estrogen, which leads to endometrial proliferation and symptomatic uterine
bleeding. Consequently 80–90% of the tumors are diagnosed at an early stage [2]. However,
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serum estradiol level is not a reliable tumor marker since 30% of cases do not secrete
estrogen due the lack of theca cells in tumor stroma [3]. AGCTs also secrete inhibin A
and B, inhibin B being more frequently elevated [3]. A somatic missense mutation in
Forkhead Box L2 (FOXL2) (c.402C > G; C134W) is present in 95–97% of AGCTs and is
considered pathognomonic [4,5]. This mutation can be used as a sensitive and specific test
for molecular differential diagnosis of AGCT [6].

The prognosis of AGCT is generally favorable with 5- and 10-year overall survival
rates of 98% and 84%, respectively, in FOXL2-validated cohorts [5]. Nevertheless, up to
one-third of AGCTs relapse [7,8], and 50–80% of the relapsed patients die of the disease [8,9].
Median relapse time is 7.2 years in histologically and molecularly defined AGCT cohorts [5].
Tumor rupture is the strongest predictive factor for relapse [10].

Recently, whole-genome and whole-exome sequence analyses of fresh-frozen patholog-
ical specimens have identified recurring telomerase reverse transcriptase (TERT) promoter
(−124C > T) and lysine methyltransferase 2D (KMT2D) truncating mutations in AGCTs.
These molecular variants were associated with more aggressive disease [11–13]. Currently,
however, there are no molecular markers to identify patients with increased risk of relapse
or progression [12].

In this study we compared the transcriptomic profiles of archival primary and relapsed
AGCTs to identify markers that would distinguish patients with risk of tumor relapse in
AGCT patients. We analyzed formalin-fixed paraffin-embedded (FFPE) tissue samples from
a cohort of patients with comprehensive clinical data and follow-up time up to 33.9 years.
We profiled the gene expression pattern of these samples using 3′ mRNA sequencing.

2. Materials and Methods
2.1. Patient Samples

The AGCT samples analyzed in this study were tested positive for the FOXL2 (c.402C > G,
p.C134W) mutation [14] and are summarized in Figure 1. Originally, 40 FFPE samples
were included into the study. Two of the FFPE samples failed library preparation (one
non-relapsed primary (n-Prim) and one relapse (Rec)) and two samples were excluded
from analyses due to poor sequencing read counts (one n-Prim and one Rec). One dupli-
cate sample was also excluded from the analysis (Rec). The final study cohort included
35 archival FFPE AGCT samples from 29 patients: 14 primary AGCT samples from patients
who did not have a relapse in 17 to 26 years (median 19.1 years) of follow-up (n-Prim,
Group 1), 13 primary AGCT samples from patients who had a relapse in 1.7 to 18 years
(median 8.5 years) after primary tumor diagnosis/surgery (r-Prim, Group 2), and 8 from
relapsed tumors that relapsed in 2.8–18.9 years (median 6.0 years) from original diagnosis
(Rec, Group 3), including 6 patients with primary-relapse tumor pairs (Figure 1). The
archival age of the FFPE samples ranged from 4 to 43 years altogether, with a median
of 20 years (Table 1). RNA extracted from FFPE samples was partly degraded; RNA in-
tegrity number (RIN) of the samples ranged from 1.1 to 2.9 (median RIN 2.5). Clinical
and molecular characteristics of the AGCT patients in each group are presented in Table 1.
TERT promoter mutation status of 23 samples out of the 35 was previously character-
ized in Pilsworth et al. [11]. To validate the FFPE results, six fresh frozen tumor samples
(three primary and three relapsed tumors that relapsed in 1.0–22.6 years after primary
tumor diagnosis/surgery) were included to the study. According to Finnish legislation,
no written or verbal consent was needed from the patients for using the archival tissue
samples coupled with clinical data. All experiments were carried out in accordance with
applicable regulations and ethical guidelines. The ethics committee of Helsinki University
Central Hospital and the National Supervisory Authority for Welfare and Health in Finland
approved the experimental protocols used in this study.
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Figure 1. A cohort of archival AGCT samples was sequenced using Lexogen RNA 3′ QuantSeq. 
Originally 40 FOXL2 mutation validated AGCT samples were collected for this study. 

Table 1. Clinical characteristics of the AGCT patients in the Lexogen QuantSeq sample cohort. 
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Only 
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 N (% or Range) N (% or Range) N (% or Range) N (% or Range) 
Number of patients 14 13 8 35 

Growth pattern     

Sarcomatoid 5 (35.7) 8 (61.5) 4 (50) 17 (48.6) 
Differentiated 9 (64.3) 5 (38.5) 4 (50) 18 (51.4) 

Menopause status     

Pre-menopausal 5 (35.7) 4 (30.8) 1 (12.5) 10 (28.6) 
Post-menopausal 9 (64.7) 9 (69.2) 7 (87.5) 25 (71.4) 

Age at diagnosis in years 
(average, range) 

52 (31–68) 48 (29–66) 57 (46–69) 51 (29–69) 

Tumor size     

<10 cm 9 (64.7) 6 (46.2) 6 (75.0) 21 (60.0) 
>10 cm 5 (35.7) 7 (53.8) 2 (25.0) 14 (40.0) 

Time to 1st recurrence in 
years (average, range) 

- 9.4 (1.8–18.9) 8.1 (2.8–18.9) 8.9 (1.8–18.9) 

Follow-up time in years 
(average, range) 

20.2 (17.2–26.1) 18.0 (6.9–33.9)  16.4 (7.4–22.2) 18.5 (6.9–33.9) 

TERT promoter mutation sta-
tus 

    

Positive 3 (21.4) 1 (7.7) 1 (12.5) 5 (14.3) 
Wild type 10 (71.4) 7 (53.8) 1 (12.5) 18 (51.4) 

N/A 1 (7.1) 5 (38.5) 6 (75.0) 12 (34.3) 
Survival     

Alive 13 (92.9) 7 (53.8) 5 (62.5) 25 (71.4) 

Figure 1. A cohort of archival AGCT samples was sequenced using Lexogen RNA 3′ QuantSeq.
Originally 40 FOXL2 mutation validated AGCT samples were collected for this study.

Table 1. Clinical characteristics of the AGCT patients in the Lexogen QuantSeq sample cohort.

Characteristic Primary Tumor
Only

Primary Tumor with
Recurrence Recurrent Total

N (% or Range) N (% or Range) N (% or Range) N (% or Range)

Number of patients 14 13 8 35
Growth pattern

Sarcomatoid 5 (35.7) 8 (61.5) 4 (50) 17 (48.6)
Differentiated 9 (64.3) 5 (38.5) 4 (50) 18 (51.4)

Menopause status
Pre-menopausal 5 (35.7) 4 (30.8) 1 (12.5) 10 (28.6)
Post-menopausal 9 (64.7) 9 (69.2) 7 (87.5) 25 (71.4)

Age at diagnosis in years
(average, range) 52 (31–68) 48 (29–66) 57 (46–69) 51 (29–69)

Tumor size
<10 cm 9 (64.7) 6 (46.2) 6 (75.0) 21 (60.0)
>10 cm 5 (35.7) 7 (53.8) 2 (25.0) 14 (40.0)

Time to 1st recurrence in years
(average, range) - 9.4 (1.8–18.9) 8.1 (2.8–18.9) 8.9 (1.8–18.9)

Follow-up time in years
(average, range) 20.2 (17.2–26.1) 18.0 (6.9–33.9) 16.4 (7.4–22.2) 18.5 (6.9–33.9)

TERT promoter mutation status
Positive 3 (21.4) 1 (7.7) 1 (12.5) 5 (14.3)

Wild type 10 (71.4) 7 (53.8) 1 (12.5) 18 (51.4)
N/A 1 (7.1) 5 (38.5) 6 (75.0) 12 (34.3)

Survival
Alive 13 (92.9) 7 (53.8) 5 (62.5) 25 (71.4)

Died of AGCT 1 (7.1) 5 (38.5) 3 (37.5) 8 (22.9)
Died of other causes 1 (7.1) 1 (7.7) - 2 (5.7)
Primary tumor stage

1a 6 (42.9) 6 (46.2) 2 (25.0) 14 (40.0)
1c 5 (35.7) 6 (46.2) 5 (62.5) 16 (45.7)
2 2 (14.3) 1 (7.7) 1 (12.5) 4 (11.4)
3 1 (7.1) - -

Sample archival age in years
(average, range) 22 (18–27) 28 (13–43) 15 (4–35) 23 (4–43)
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2.2. RNA Extraction and RNA Quantity and Quality Assessment

Ten AGCT FFPE tissue sections of 5-µm thickness were mounted on objective slides,
and areas with >80% AGCT cellularity (based on hematoxylin and eosin slide review) were
scraped off into a microcentrifuge tube. Total RNA was extracted from the FFPE tissue
using Maxwell RSC RNA FFPE kit (Promega, Madison, WI, USA), according to instructions.
Quality and quantity of the extracted RNA samples were assessed with a 2100 Bioanalyzer
using RNA 6000 Pico Kit (Agilent, Santa Clara, CA, USA) and Qubit RNA BR kit (Thermo
Fisher Scientific, Waltham, MA, USA). For genomic DNA contamination measurement, a
Qubit DNA BR kit (Thermo Fisher Scientific, Waltham, MA, USA) was used. In order to
avoid the batch effect, all RNA samples were extracted using the same automated extraction
system by one researcher. Furthermore, all samples were sequenced on the same run.

2.3. Library Preparation and RNA Sequencing

Single-indexed mRNA libraries were prepared from 100 ng of RNA with QuantSeq
3′ mRNA-Seq Library Prep Kit FWD (Lexogen GmbH, Vienna, Austria), according to the
user guide version 015UG009V0230. ERCC RNA spike-in mix (Life Technologies, Carlsbad,
CA, USA) was added as a control to each sample according to manufacturer’s instructions.
Quality of libraries was measured using 2100 Bioanalyzer DNA High Sensitivity Kit (Agi-
lent, Santa Clara, CA, USA). Sequencing was performed with HiSeq 2500 System (Illumina,
San Diego, CA, USA) in high output run mode using v4 chemistry. Read length for the
paired-end run was 2 × 101 bp and target coverage of 5 M reads for each library. QuantSeq
3′ mRNA-Seq Integrated Data Analysis Pipeline on Bluebee® (Lexogen) was used for
preliminary quality evaluation of the RNA sequencing data. The data were deposited
in the NCBI Gene Expression Omnibus and are accessible through GEO Series accession
number GSE190942.

2.4. Bioinformatics and Statistical Analysis

To filter out lowly expressed genes, sample read counts were transformed into count-
per-million (CPM) values using edgeR package [15,16] in R [17]. Genes with more than
0.4 CPM values in at least eight samples were included for further downstream differential
expression analyses. After filtering, 21,149 genes were retained. The filtered data were
normalized and transformed using the voom function from the limma package [18], using
the normalization factors.

Differential gene expression analyses were conducted in two experiments: the first
experiment tested differential gene expression among all three different sample groups
(group 1: non-relapsed primary tumors, group 2: relapsed primary tumors, and group 3:
relapse tumors), and the second experiment combined group 1 and group 2 to assess
differentially expressed genes with Group 3. Differential gene expression analyses were
performed using the lmfit function also from the limma package [18], taking sample age as a
covariate. After doing differential expression analysis with limma, multiple testing was
accounted for by adjusting the p-values based on the false discovery rate (FDR). Cut-off
value was set to the Benjamini–Hochberg adjusted p-value < 0.05.

2.5. RNA In Situ Hybridization

RNA in situ hybridization was performed on a FOXL2 mutation validated AGCT tissue
microarray (TMA) series containing 175 (121 primary and 54 relapsed) tumor samples [13].
This array contains both primary and relapsed tumor samples from 19 different patients
(1–5 relapse samples each). We used freshly cut 4.5 µm sections of the AGCT TMA using
RNAscope 2.5 HD detection kit-BROWN (#322310, ACDBio, Milano, Italy) for target mRNA
detection. In short, tissue sections were baked for 1 h at 60 ◦C, then deparaffinized and
treated with hydrogen peroxide for 10 min at room temperature. Target retrieval was
performed for 15 min at 95 ◦C, followed by protease plus treatment for 15 min at 40 ◦C. The
probes Hs-PLIN4 (#809051, target region: 2289–3198, ACDBio), Hs-PLVAP (#437461, target
region: 647–2039, ACDBio), Hs-ASS1 (#431291, target region: 86–1542, ACDBio), positive
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control probe Hs-PPIB (#313901, target region: 139–989, ACDBio) and negative control
probe dapB (#310043, target region: 414–862, ACDBio) were hybridized for 2 h at 40 ◦C
followed by signal amplification steps. The samples were incubated for 45 min with AMP 5–
reagent. The sections were next treated with DAB for 10 min at room temperature followed
by counterstaining with 50% hematoxylin. The sections were dipped in ammonium water
and dehydrated before mounting. Two researchers (N.A. and M.P.) performed the scoring
independently and disagreements were resolved by a joint review. The number of dots was
classified into four categories from 0 to 3 (0 = negative, 1 = weak, 2 = moderate, 3 = high
expression). All TMAs were digitalized using a 3DHISTECH Pannoramic 250 FLASH II
digital slide scanner at Genome Biology Unit supported by HiLIFE and the Faculty of
Medicine, University of Helsinki, and Biocenter Finland.

3. Results
3.1. Transcriptional Profiling of Archival AGCT Samples

We performed transcriptional profiling on archival primary AGCT samples without a
relapse (n-Prim, n = 14), primary AGCTs with relapse (r-Prim, n = 13), and relapsed tumors
(Rec, n = 8), and performed a pairwise comparison between the gene expression profiles of
relapsed tumors and their corresponding primary tumors (n = 6) (Figure 1).

Since RNA in FFPE samples is fragmented and partially degraded, we performed
gene expression profiling using 3′ mRNA sequencing that is well suited for detecting
short transcripts [19]. This sequencing method includes all transcripts that have poly(A)
tails, and only one copy of cDNA is generated for each transcript. Therefore, the number
of reads directly reflects the number of transcripts of each individual gene, and longer
transcripts are not underrepresented in the analysis. We did not find significant difference
in RNA integrity among the three sample groups (Figure 2A). The libraries generated from
149,000 to 1,791,263 raw reads (median 651,298) (Figure 2B). The oldest n-Prim samples
had significantly fewer reads than the Rec samples (p < 0.03) (Figure 2B), and the library
size showed a weak negative correlation with sample archival age (r = −0.38, p < 0.03)
(Figure 2C), while RNA integrity did not (Figure 2D).

We performed a principle component analysis to visualize the distance and relatedness
between the three sample populations, and we found that the samples did not cluster into
their groups, and that variation in the gene expression pattern was not explained by the
sample group (Figure 2E). The distance between the paired samples in the multidimensional
scaling plot did not correlate with time to relapse.

3.2. Primary AGCT Samples with or without Later Relapse Show Highly Similar Gene
Expression Patterns

We next performed differential gene expression analysis to assess global changes in
gene expression between the three sample groups. First, we transformed sample read
counts into counts-per-million (CPM) values to filter out transcripts expressed at low
levels. We included transcripts with more than 0.4 CPM values in at least eight samples
for differential gene expression analyses. After filtering, 21,149 transcripts were retained
for further analysis. Sample archival age was significantly associated with library size and
(p < 0.05) in regression analysis (Figure 2C), and we therefore included archival age as a
covariate in the subsequent differential gene expression analysis.

We first compared the gene expression patterns between the two primary tumor
groups (n-Prim and r-Prim). These two groups showed highly similar gene expression
patterns, and no genes with significantly differential expression were identified. To test
whether less stringent filtering criteria would uncover more differentially expressed genes
between the n-Prim and r-Prim groups, we lowered the read count filtering criteria to >0.3
CPM values in at least 5 samples. With these criteria, the number of transcripts included in
the analysis increased by 11% to 23,560, but the two primary tumor groups still did not
show significant differential gene expression.
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Figure 2. The cDNA library size shows a weak negative correlation with the sample archival age. The
RIN values did not differ significantly between the 3 AGCT sample groups (A). The cDNA library
size was significantly higher in the Rec samples compared to n-Prim tumor samples, p < 0.03 (B).
The cDNA library size had a weak negative correlation with the sample archival age in years (y),
r = −0.38, p < 0.03 (C), but there was no correlation between the RIN value and the sample archival
age in years (y) (D). We performed a principal component analysis on the sequenced samples to
visualize the relationships between the samples. White circle represents the n-Prim, grey circle
represents the r-Prim, and black circles represent the Rec samples, respectively (E).

3.3. Relapsed AGCT Show Stable Transcriptomic Profiles as Compared to Primary Tumors

Next, we analyzed the transcriptomic differences between the six primary-relapse
tumor pairs. Interestingly, these tumor pairs did not reveal any differentially expressed
genes. We then combined both primary tumor groups (n-Prim and r-Prim) and compared
their transcriptomic signatures (n = 27) to the relapsed tumors (Rec, n = 8). Three genes
showed differential expression: plasmalemma vesicle associated protein (PLVAP) was sig-
nificantly up-regulated (log FC 2.5, p = 0.01) in relapsed tumors (Figure 3A), while perilipin
4 (PLIN4) (log FC −2.2, p = 0.02) and argininosuccinate synthase 1 (ASS1) (logFC −1.6,
p = 0.01) were significantly down-regulated (Figure 3B,C, respectively). Figure 3D shows
the differences in transcript abundance for PLVAP, PLIN4, and ASS1 among the three AGCT
sample groups. Lowering the read count filtering did not reveal additional differentially ex-
pressed genes between the combined primary tumor and relapsed tumor groups. PLVAP is
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a protein expressed in endothelial cells, and it forms the stomatal and fenestral diaphragms
of blood vessels and regulates basal permeability, leukocyte migration, and angiogenesis
(reviewed in [20]). PLVAP is upregulated in endothelial cells in several tumors, where it
facilitates vascular growth in cancer [20]. PLIN4 encodes for a perilipin family protein
that sequesters lipids by protecting lipid droplets from lipase action, and it may promote
chemoresistance of triple negative breast cancer cells [21,22]. ASS1 is a rate-limiting enzyme
in arginine biosynthesis, and its abundance is reduced in various solid tumors, making
them auxotrophic for arginine. ASS1 is highly expressed in gastric cancer and its expression
positively correlates with gastric cancer aggressiveness and poor outcome [23]. To validate
the FFPE-sample results we sequenced six fresh frozen tumor samples (three primary
and three recurrent tumors) along with the FFPE-samples. Differential gene expression
analysis did not identify any differentially expressed genes between the primary and
recurrent tumors.
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the Rec samples, respectively. Differences in transcript abundance are shown for PLVAP, PLIN4, and
ASS1 in AGCT samples (D). In the heatmap, red color represents relative increase in abundance; the
blue color represents relative decrease, and the white color represents no change. The red color in the
bar above the heatmap represents n-Prim, the black color represents the r-Prim, and the blue color
represents Rec samples, respectively.

3.4. Gene Expression Patterns in AGCT Are Independent of TERT Mutation Status

A somatic TERT promoter mutation has previously been found in about one-third of
AGCT samples [11,12]. We analyzed whether there were differentially expressed genes
between TERT promoter mutation positive and wild type samples. There were 5 TERT
mutation positive samples, 3 primary tumors without relapse, and a primary-relapse tumor
pair from one patient [11], and 18 cases were wild type for the TERT mutation (Table 1).
We did not find differentially expressed genes between the TERT mutation positive and
wild-type samples even with the less stringent filtering criteria.
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3.5. A TMA Validation Cohort Confirms PLVAP Upregulation Both in Tumor Cells and
Endothelial Cells within Relapsed Samples

We next used RNA in situ hybridization to validate the expression patterns of PLVAP,
PLIN4, and ASS1 in an AGCT TMA containing 121 primary, and 54 relapse FOXL2 mutation
positive AGCT samples. All RNA sequenced samples were included in the TMA array, and
it includes 17 matched pairs of primary and relapse tumors from the same patient. The
clinical characteristics of the patient samples in this cohort have been described earlier [18].
We used cyclophilin B (PPIB) as the control for RNA quality, and samples that were negative
for PPIB expression were excluded from further analysis. We scored each target probe
expression into negative, weak, moderate, or high according to the amount of signal
detected, and each target gene expression was normalized to PPIB expression, and samples
negative for PPIB expression were discarded (Table 2). After normalization all positively
stained samples were grouped together for correlation analyses (Table 3).

Table 2. Distribution of PLVAP, PLIN4, ASS1, and PPIB RNA in situ hybridization scores in
AGCT TMA.

Marker Score 0 n, (%) Score 1 n, (%) Score 2 n, (%) Score 3 n, (%)

PLVAP GCT cells (n = 168) 125 (74.4) 41 (24.4) 2 (1.2) 0 -
PLVAP endothelial cells (n = 168) 82 (48.8) 30 (17.9) 40 (23.8) 16 (9.5)

PLIN4 (n = 168) 41 (24.4) 87 (51.8) 40 (23.8) 0 -
ASS1 (n = 167) 69 (41.3) 88 (52.7) 10 (6.0) 0 -
PPIB (n = 168) 11 (6.5) 63 (37.5) 61 (36.6) 33 (19.6)

Table 3. Distribution of normalized PLVAP, PLIN4, and ASS1 RNA in situ hybridization scores in
AGCT TMA.

Marker Positive n, (%) Negative n, (%)

PLVAP AGCT cells (n = 157) 43 (27.4) 114 (72.6)
PLVAP endothelial cells (n = 156) 84 (53.8) 72 (46.2)

PLIN4 (n = 157) 126 (80.3) 31 (19.7)
ASS1 (n = 157) 77 (49.4) 79 (50.6)

PLVAP was expressed in both endothelial cells (Figure 4A) and tumor cells (Figure 4B),
and expression in each cell type was scored separately. Compared to primary tumors,
PLVAP expression was significantly higher in the tumor cells of all relapse samples (p = 0.02,
n = 157). When primary tumors were correlated with only the first relapse the difference
was even more significant (p = 0.0029, n = 143). Moreover, the endothelial cells of the
relapsed tumors had significantly higher PLVAP expression compared to the endothelial
cells of primary tumors (p < 0.0001, n = 156), and when only the first relapse was considered,
the difference was more significant (p < 0.0001, n = 142). PLVAP expression was also higher
in the endothelial cells of stage Ib-III primary tumors compared with endothelial cells of
stage Ia primary tumors (p < 0.05, n = 105), but not in the tumor cells. PLVAP expression
did not correlate with the growth pattern of the tumor, tumor size, or relapse. Matched
pair analysis of primary and relapsed samples from the same patient (n = 17) did not
reveal statistically significant differential expressions between the samples. In the primary
tumors, PLVAP expression in either blood vessels or AGCT cells did not convey prognostic
significance to either progression-free or overall survival.
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Figure 4. Validation of PLVAP, ASS1, and PLIN4 expression in AGCT tissue microarray. mRNA
expression patterns of PLVAP, ASS1, and PLIN4 were assessed in a cohort of 175 AGCT samples
using RNA in situ hybridization. Representative images of low and high expression patterns are
shown. PLVAP was expressed in 33.8% of samples only in the endothelial cells (A), and both in
endothelial and AGCT cells in 25.5% of the samples (B). Representative images of low and high ASS1
expression (C,D, respectively), and low and high PLIN4 expression (E,F, respectively) in AGCT cells.
Magnification 164.5×, and scalebar 20 µm. Arrowheads indicate positively stained endothelial cells
and arrows indicate positively stained AGCT cells.

ASS1 and PLIN4 mRNA were expressed primarily in the AGCT cells, although some
signal was detected in stromal cells. Low and high expression patterns are shown for
ASS1 (Figure 4C,D, respectively) and PLIN4 (Figure 4E,F, respectively). Using RNA in
situ hybridization, we did not find statistically significant differences in ASS1 and PLIN4
expression between the primary and relapsed tumors in the TMA samples, nor did their
expression correlate with primary tumor stage, size, growth pattern, or with relapse.
Matched pair analysis of primary and relapsed samples from the same patients did not
reveal statistically significant differential expression between the samples. Neither PLIN4
nor ASS1 expression in AGCT cells of the primary tumors conveyed prognostic significance
to progression-free or overall survival.

4. Discussion

Due to its rarity, indolent growth pattern, and tendency to recur late, it is difficult
to obtain cryopreserved high-quality AGCT samples with sufficient follow-up data to
perform gene expression profiling for identification of markers that would predict tumor
relapse. Archival formalin-fixed paraffin-embedded (FFPE) material collected at hospitals
worldwide provide enormous resources for studying cancer and also enable long-term
follow-up of the patients. FFPE tissue preservation is the most widely practiced method for
archiving clinical samples, but the fixation causes substantial chemical modifications in the
RNA, which makes the isolation of high-quality RNA challenging for genetic profiling. In
addition, specimen size, tissue storage time and conditions influence the FFPE sample RNA
quality [24]. For standard transcriptome level profiling, mRNA-sequencing of FFPE samples
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is, however, a reliable and cost-effective method. The gene expression measurement of
FFPE samples using the standard poly(A) protocol represents similar differential expression
as obtained for fresh frozen tissues [19]. In the present study, we used Lexogen QuantSeq
3′ mRNA-sequencing, which is suitable for detecting short transcripts of the partially
degraded RNA of FFPE samples [25].

This is the first report to compare the gene expression profiles of primary AGCTs that
did or did not recur in a group of patients with long follow-up. The cohort comprised
of 35 archival FOXL2-mutation validated AGCT FFPE samples collected between 1975
and 2013 and sample archival age ranged from four to 43 years. We have comprehensive
clinical data of these patients with exceptionally long follow-up times, ranging from 6.9
to 33.9 years, and this enabled us to perform retrospective comparisons between the non-
relapsed and relapsed primary AGCT groups. AGCTs are generally non-inflamed or “cold”
tumors that lack infiltrating T cells. The tumor mass consists mainly of tumor cells with
minimal stroma [26]; therefore, our sequencing results are representative of AGCT cells.
We performed mRNA sequencing on these samples, firstly, to compare the gene expression
profiles of tumors with and without later relapse, and secondly, to compare the profiles of
primary and relapsed tumors.

Interestingly, we found stable transcriptomes between primary tumors with or with-
out relapse, suggesting that tumor relapse is not driven by alterations in gene expression
profiles. This is consistent with the observed stable genomes of AGCTs [1,27]. In addition,
analysis of the six matched pairs of primary and relapsed tumor showed no significant dif-
ferentially expressed genes, further strengthening the role of stable transcriptomes during
AGCT progression. Chromosomal alterations are relatively common in AGCT [12,13,28],
and chromosome instability is suggested to predict early recurrence and aggressive tumor
behavior [29]. The transcriptomic profile of the AGCT tumors have been shown to exhibit
typical hallmarks of cancer [30]. In terms of AGCT prognosis, the significance of these
findings remains unknown. The pathognomonic FOXL2 missense mutation of AGCTs is
not prognostic for relapse, albeit a study by Kraus et al. suggests that FOXL2 homozygous
genotype is prevalent in recurrent AGCTs [29]. FOXL2 target genes associated with faster
cell cycling are induced, and genes linked with cell death are downregulated in AGCTs
compared to healthy granulosa-luteal cells [30]. However, we did not observe differences
in cell cycle associated genes between different AGCT groups. These findings highlight
AGCT as a highly unique tumor, which lacks driver alterations in the canonical signaling
pathways [31]. This lack of actionable driver alterations in the setting of relapse poses a
therapeutic challenge and warrants further studies on the potential role of other factors,
such as the tumor microenvironment and host immunology, in the prognostication and
treatment of AGCTs.

Previously, next generation sequencing methods (NGS) have demonstrated a small
number of recurring somatic mutations in AGCT that are enriched in relapsed tumors and
may thus contribute to tumor progression. Pilsworth et al. discovered a C228T mutation in
the TERT promoter of FOXL2 validated AGCTs that is present in 23% of primary AGCTs
and 45% of relapsed tumors [11,12,32]. A set of recurring truncating mutations in histone
lysine methyltransferase (KMT2D/MLL2) gene was also found to be present in 3% of
primary and in 23% of relapsed AGCTs studied [12]. Da Cruz et al. showed that AGCTs
display intra-lesion heterogeneity and harbor both clonal and subclonal mutations [32].
However, the significance of these findings in AGCT tumor behavior remains unclear.

We found three significantly differentially expressed genes between the primary and re-
lapsed tumors in the mRNA sequenced cohort; in relapsed tumors PLVAP was upregulated
compared to primary tumors, while ASS1 and PLIN4 were downregulated. Further, PLVAP
was significantly upregulated also in relapsed tumors in the validation TMA cohort. RNA
in situ hybridization revealed that both AGCT cells and endothelial cells express PLVAP,
and that it was upregulated in both cell types in relapsed tumors. PLVAP is an endothelial
cell-specific protein that is upregulated in various pathophysiological processes associated
with angiogenesis, including tumorigenesis [20]. It specifically localizes to diaphragms of
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fenestrae in fenestrated capillaries, and to stomatal diaphragms of caveolae [33]. This is the
first report showing PLVAP expression in AGCT cells, but the function of this gene in the
tumor cells remains unknown. Although ASS1 and PLIN4 expression were significantly
downregulated in relapsed tumors in our RNA sequenced cohort, these findings were not
recapitulated in the TMA cohort. The downregulation of ASS1 and PLIN4 is therefore
unlikely to play a significant role in AGCT progression.

We acknowledge that the archival age of our samples affects their RNA quality and
therefore reduces the power to detect differential gene expression. We, however, used a
method successfully applied on archival samples in several recent studies to be able to
study our unique cohort with extended follow-up times [34,35]. Therefore, we believe that
our results are still valid and in line with previous findings; a subset of AGCT patients
gain secondary mutations, but they do not explain the diverse clinical behavior of this
disease, and the FOXL2 C402G mutation remains the main driver of this disease [36]. The
low number of differentially expressed genes between the primary and relapsed tumors
suggests that AGCT do not exhibit major tumor evolution, at least in terms of global gene
expression. As we measured only mRNA levels in this study, this study does not account
for the role of post-translational editing and protein activity, or the role of microRNA
expression profile in tumor progression. Furthermore, tumor progression may be partly
explained by host immunology and immunoediting. AGCTs typically relapse late, and
mutational burden accumulates slowly in the relapsed tumors [32]. It is tempting to
speculate that FOXL2 mutated tumor cells continue to proliferate slowly, so relapse may
ensue if all residual tumor cells are not removed by surgery or if systemic immunoediting
cannot control the tumor growth.

In summary, primary AGCTs that did or did not relapse show nearly identical gene
expression patterns, and only PLVAP was found to be significantly differentially expressed
between primary and relapsed tumors. Our results reinforce the previous findings that
relapse and/or aggressive behavior of AGCT is not defined by activation or loss of specific
genes or pathways. Instead, AGCT is a peculiar entity of low mutational burden, and we
hypothesize that host-derived features, such as immunoediting, play an important role in
the course of AGCT disease progression.
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