28,180 research outputs found

    The g-mode spectrum of reactive neutron star cores

    Full text link
    We discuss the impact of nuclear reactions on the spectrum of gravity g-modes of a mature neutron star, demonstrating the anticipated disappearance of these modes when the timescale associated with the oscillations is longer than that of nuclear reactions. This is the expected result, but different aspects of the demonstration may be relevant for related problems in neutron star astrophysics. In particular, we develop the framework required for an explicit implementation of finite-time nuclear reactions in neutron star oscillation problems and demonstrate how this formulation connects with the usual bulk viscosity prescription. We also discuss implications of the absence of very high order g-modes for problems of astrophysical relevance.Comment: 7 pages, 2 figure

    Tidal stripping as a mechanism for placing globular clusters on wide orbits: the case of MGC1 in M31

    Full text link
    The globular clusters of large spiral galaxies can be divided into two populations: one which formed in-situ and one which comprises clusters tidally stripped away from other galaxies. In this paper we investigate the contribution to the outer globular cluster population in the M31 galaxy through donation of clusters from dwarf galaxies. We test this numerically by comparing the contribution of globular clusters from simulated encounters to the observed M31 globular cluster population. To constrain our simulations, we specifically investigate the outermost globular cluster in the M31 system, MGC1. The remote location of MGC1 favours the idea of it being captured, however, the cluster is devoid of features associated with tidal interactions. Hence we separate simulations where tidal features are present and where they are hidden. We find that our simulated encounters can place clusters on MGC1-like orbits. In addition, we find that tidal stripping of clusters from dwarf galaxies leaves them on orbits having a range of separations, broadly matching those observed in M31. We find that the specific energies of globular clusters captured by M31 closely matches those of the incoming host dwarf galaxies. Furthermore, in our simulations we find an equal number of accreted clusters on co-rotating and counter-rotating orbits within M31 and use this to infer the fraction of clusters that has been accreted. We find that even close in roughly 50% of the clusters are accreted, whilst this figure increases to over 80% further out.Comment: 17 pages, 12 figures. Accepted for publication in MNRA

    String Effects on Fermi--Dirac Correlation Measurements

    Get PDF
    We investigate some recent measurements of Fermi--Dirac correlations by the LEP collaborations indicating surprisingly small source radii for the production of baryons in e+e−e^+e^--annihilation at the Z0Z^0 peak. In the hadronization models there are besides the Fermi--Dirac correlation effect also a strong dynamical (anti-)correlation. We demonstrate that the extraction of the pure FD effect is highly dependent on a realistic Monte Carlo event generator, both for separation of those dynamical correlations which are not related to Fermi--Dirac statistics, and for corrections of the data and background subtractions. Although the model can be tuned to well reproduce single particle distributions, there are large model-uncertainties when it comes to correlations between identical baryons. We therefore, unfortunately, have to conclude that it is at present not possible to make any firm conclusion about the source radii relevant for baryon production at LEP

    Electronic structure of C60 / graphite

    Full text link
    We report temperature-dependent photoelectron spectra for a monolayer of C_60 adsorbed on HOPG, as well as C 1s x-ray absorption. This extends a previous report which showed the close similarity between the spectrum of the HOMO for the two-dimensional overlayer and that of C_60 in the gas phase. The present work shows that intermolecular and molecule-substrate vibrations contribute strongly to the spectral lineshape at room temperature. Thus, vibrational effects are shown to be crucial for the proper understanding of photoelectron spectra, and thus the charge transport properties, for C_60 in contact with graphite and graphite-like materials.Comment: Proc. of the XV. Int. Winterschool on Electronic Properties of Novel Materials, Kirchberg/Tirol, Austria, 200

    The Feynman-Wilson gas and the Lund model

    Get PDF
    We derive a partition function for the Lund fragmentation model and compare it with that of a classical gas. For a fixed rapidity ``volume'' this partition function corresponds to a multiplicity distribution which is very close to a binomial distribution. We compare our results with the multiplicity distributions obtained from the JETSET Monte Carlo for several scenarios. Firstly, for the fragmentation vertices of the Lund string. Secondly, for the final state particles both with and without decays.Comment: Latex, 21+1 pages, 11 figure

    The Merger of Small and Large Black Holes

    Get PDF
    We present simulations of binary black holes mergers in which, after the common outer horizon has formed, the marginally outer trapped surfaces (MOTSs) corresponding to the individual black holes continue to approach and eventually penetrate each other. This has very interesting consequences according to recent results in the theory of MOTSs. Uniqueness and stability theorems imply that two MOTSs which touch with a common outer normal must be identical. This suggests a possible dramatic consequence of the collision between a small and large black hole. If the penetration were to continue to completion then the two MOTSs would have to coalesce, by some combination of the small one growing and the big one shrinking. Here we explore the relationship between theory and numerical simulations, in which a small black hole has halfway penetrated a large one.Comment: 17 pages, 11 figure

    Dynamical excitation of space-time modes of compact objects

    Get PDF
    We discuss, in the perturbative regime, the scattering of Gaussian pulses of odd-parity gravitational radiation off a non-rotating relativistic star and a Schwarzschild Black Hole. We focus on the excitation of the ww-modes of the star as a function of the width bb of the pulse and we contrast it with the outcome of a Schwarzschild Black Hole of the same mass. For sufficiently narrow values of bb, the waveforms are dominated by characteristic space-time modes. On the other hand, for sufficiently large values of bb the backscattered signal is dominated by the tail of the Regge-Wheeler potential, the quasi-normal modes are not excited and the nature of the central object cannot be established. We view this work as a useful contribution to the comparison between perturbative results and forthcoming ww-mode 3D-nonlinear numerical simulation.Comment: RevTeX, 9 pages, 7 figures, Published in Phys. Rev.

    The Cerevoice Blizzard Entry 2007: Are Small Database Errors Worse than Compression Artifacts?

    Get PDF
    In commercial systems the memory footprint of unit selection systems is often a key issue. This is especially true for PDAs and other embedded devices. In this years Blizzard entry CereProc R○gave itself the criteria that the full database system entered would have a smaller memory footprint than either of the two smaller database entries. This was accomplished by applying speex speech compression to the full database entry. In turn a set of small database techniques used to improve the quality of small database systems in last years entry were extended. Finally, for all systems, two quality control methods were applied to the underlying database to improve the lexicon and transcription match to the underlying data. Results suggest that mild audio quality artifacts introduced by lossy compression have almost as much impact on MOS perceived quality as concatenation errors introduced by sparse data in the smaller systems with bulked diphones. Index Terms: speech synthesis, unit selection. 1
    • 

    corecore