44 research outputs found

    Synthesis and import of GDP-L‐fucose into the Golgi affect plant–water relations

    Get PDF
    Land plants evolved multiple adaptations to restrict transpiration. However, the underlying molecular mechanisms are not sufficiently understood. We used an ozone-sensitivity forward genetics approach to identify Arabidopsis thaliana mutants impaired in gas exchange regulation. High water loss from detached leaves and impaired decrease of leaf conductance in response to multiple stomata-closing stimuli were identified in a mutant of MURUS1 (MUR1), an enzyme required for GDP-l-fucose biosynthesis. High water loss observed in mur1 was independent from stomatal movements and instead could be linked to metabolic defects. Plants defective in import of GDP-l-Fuc into the Golgi apparatus phenocopied the high water loss of mur1 mutants, linking this phenotype to Golgi-localized fucosylation events. However, impaired fucosylation of xyloglucan, N-linked glycans, and arabinogalactan proteins did not explain the aberrant water loss of mur1 mutants. Partial reversion of mur1 water loss phenotype by borate supplementation and high water loss observed in boron uptake mutants link mur1 gas exchange phenotypes to pleiotropic consequences of l-fucose and boron deficiency, which in turn affect mechanical and morphological properties of stomatal complexes and whole-plant physiology. Our work emphasizes the impact of fucose metabolism and boron uptake on plant–water relations

    Stress-related accumulation of arabidopsides: impact on chloroplast membranes

    Full text link
    Oxylipins are crucial agents in plant defense mechanisms. While free oxylipins are well studied, roles of esterified oxylipins remain unclear. Esterified oxylipins are structurally diverse metabolites that were found in diverse plant species, suggesting that those may be more ubiquitous that currently thought. Among those, galactolipids containing (dn)OPDA were discovered, firstly in A. thaliana, but also in other plants. Those molecules, named arabidopsides, are highly induced under stress conditions, as it accumulates up to 8 percent of plant lipids, but their precise contributions in plant defense mechanisms are still unknown. Arabidopsides are directly formed in plant chloroplast membranes from galactolipids. Accumulation of arabidopsides in such high quantity in chloroplast membranes may modify their properties (e.g. photosynthetic activity). This study aims to understand the impact of arabidopside presence in chloroplast membranes on their properties using biomimetic plant membranes via complementary in silico and in vitro approaches. Interfacial properties of arabidopsides and non-oxidized galactolipids were studied using Langmuir film balance. Results showed that arabidopsides possess different interfacial properties compared to non-oxidized chloroplast lipids. Arabidopsides ability to permeabilize chloroplast membranes was also studied in vitro. Arabidopsides A and B are able to permeabilize chloroplast membranes while arabidopside D is not. In conclusion, arabidopside production by plants under stress conditions may modify chloroplast membrane properties such as its permeability. As chloroplast membrane lipid composition is essential to its photosynthetic ability, such changes may also affect its function

    Even Faster Algorithm for Set Splitting!

    No full text
    In the p-Set Splitting problem we are given a universe U, a family F of subsets of U and a positive integer k and the objective is to find a partition of U into W and B such that there are at least k sets in F that have non-empty intersection with both B and W. In this paper we study p-Set Splitting from the view point of kernelization and parameterized algorithms. Given an instance (U, F, k) of p-Set Splitting, our kernelization algorithm obtains an equivalent instance with at most 2k sets and k elements in polynomial time. Finally, we give a fixed parameter tractable algorithm for p-Set Splitting running in time O(1.9630k + N), where N is the size of the instance. Both our kernel and our algorithm improve over the best previously known results. Our kernelization algorithm utilizes a classical duality theorem for a connectivity notion in hypergraphs. We believe that the duality theorem we make use of could become an important tool in obtaining kernelization algorithms.

    Acylated monogalactosyl diacylglycerol: prevalence in the plant kingdom and identification of an enzyme catalyzing galactolipid head group acylation in Arabidopsis thaliana.

    No full text
    The lipid phase of the thylakoid membrane is mainly composed of the galactolipids mono- and digalactosyl diacylglycerol (MGDG and DGDG, respectively). It has been known since the late 1960s that MGDG can be acylated with a third fatty acid to the galactose head group (acyl-MGDG) in plant leaf homogenates. In certain brassicaceous plants like Arabidopsis thaliana, the acyl-MGDG frequently incorporates oxidized fatty acids in the form of the jasmonic acid precursor 12-oxo-phytodienoic acid (OPDA). In the present study we further investigated the distribution of acylated and OPDA-containing galactolipids in the plant kingdom. While acyl-MGDG was found to be ubiquitous in green tissue of plants ranging from non-vascular plants to angiosperms, OPDA-containing galactolipids were only present in plants from a few genera. A candidate protein responsible for the acyl transfer was identified in Avena sativa (oat) leaf tissue using biochemical fractionation and proteomics. Knockout of the orthologous gene in A. thaliana resulted in an almost total elimination of the ability to form both non-oxidized and OPDA-containing acyl-MGDG. In addition, heterologous expression of the A. thaliana gene in E. coli demonstrated that the protein catalyzed acylation of MGDG. We thus demonstrate that a phylogenetically conserved enzyme is responsible for the accumulation of acyl-MGDG in A. thaliana. The activity of this enzyme in vivo is strongly enhanced by freezing damage and the hypersensitive response

    Measurement of the absolute branching fraction for Λc+→Λμ+νμ

    Get PDF
    We report the first measurement of the absolute branching fraction for Λc+→Λμ+νμ. This measurement is based on a sample of e+e− annihilation data produced at a center-of-mass energy s=4.6 GeV, collected with the BESIII detector at the BEPCII storage rings. The sample corresponds to an integrated luminosity of 567 pb−1. The branching fraction is determined to be B(Λc+→Λμ+νμ)=(3.49±0.46(stat)±0.27(syst))%. In addition, we calculate the ratio B(Λc+→Λμ+νμ)/B(Λc+→Λe+νe) to be 0.96±0.16(stat)±0.04(syst)
    corecore