7,107 research outputs found
Kinematic Modeling of an EAP Actuated Continuum Robot for Active Micro-endoscopy.
International audienceAn active micro-endoscope based on concentric tubes, an emerging class of continuum robots, is presented hereby. It is designed to reach the digestive tube and the stomach for early cancer detection and intervention. The manipulator is constructed from three flexible, telescopic, and actuated tubes. The actuators are based on Electro-Active Polymer electrodes coated and patterned around the tube. A full multi-section kinematic model is developed; it is used to compare the existing constant curvature configuration to the proposed micro-endoscope. That comparison is established according to the reachable workspace and the performance indices. The results are used to prove the effectiveness of the embedded actuation method to reach the workspace more dexterously, which is very useful in medical systems, especially in surgical applications
Direct Observation of the Superfluid Phase Transition in Ultracold Fermi Gases
Water freezes into ice, atomic spins spontaneously align in a magnet, liquid
helium becomes superfluid: Phase transitions are dramatic phenomena. However,
despite the drastic change in the system's behaviour, observing the transition
can sometimes be subtle. The hallmark of Bose-Einstein condensation (BEC) and
superfluidity in trapped, weakly interacting Bose gases is the sudden
appearance of a dense central core inside a thermal cloud. In strongly
interacting gases, such as the recently observed fermionic superfluids, this
clear separation between the superfluid and the normal parts of the cloud is no
longer given. Condensates of fermion pairs could be detected only using
magnetic field sweeps into the weakly interacting regime. The quantitative
description of these sweeps presents a major theoretical challenge. Here we
demonstrate that the superfluid phase transition can be directly observed by
sudden changes in the shape of the clouds, in complete analogy to the case of
weakly interacting Bose gases. By preparing unequal mixtures of the two spin
components involved in the pairing, we greatly enhance the contrast between the
superfluid core and the normal component. Furthermore, the non-interacting
wings of excess atoms serve as a direct and reliable thermometer. Even in the
normal state, strong interactions significantly deform the density profile of
the majority spin component. We show that it is these interactions which drive
the normal-to-superfluid transition at the critical population imbalance of
70(5)%.Comment: 16 pages (incl. Supplemental Material), 5 figure
Determining Training Needs for Cloud Infrastructure Investigations using I-STRIDE
As more businesses and users adopt cloud computing services, security
vulnerabilities will be increasingly found and exploited. There are many
technological and political challenges where investigation of potentially
criminal incidents in the cloud are concerned. Security experts, however, must
still be able to acquire and analyze data in a methodical, rigorous and
forensically sound manner. This work applies the STRIDE asset-based risk
assessment method to cloud computing infrastructure for the purpose of
identifying and assessing an organization's ability to respond to and
investigate breaches in cloud computing environments. An extension to the
STRIDE risk assessment model is proposed to help organizations quickly respond
to incidents while ensuring acquisition and integrity of the largest amount of
digital evidence possible. Further, the proposed model allows organizations to
assess the needs and capacity of their incident responders before an incident
occurs.Comment: 13 pages, 3 figures, 3 tables, 5th International Conference on
Digital Forensics and Cyber Crime; Digital Forensics and Cyber Crime, pp.
223-236, 201
Creep of mafic dykes infiltrated by melt in the lower continental crust (Seiland Igneous Province, Norway)
Evidence for Superfluidity of Ultracold Fermions in an Optical Lattice
The study of superfluid fermion pairs in a periodic potential has important
ramifications for understanding superconductivity in crystalline materials.
Using cold atomic gases, various condensed matter models can be studied in a
highly controllable environment. Weakly repulsive fermions in an optical
lattice could undergo d-wave pairing at low temperatures, a possible mechanism
for high temperature superconductivity in the cuprates. The lattice potential
could also strongly increase the critical temperature for s-wave superfluidity.
Recent experimental advances in the bulk include the observation of fermion
pair condensates and high-temperature superfluidity. Experiments with fermions
and bosonic bound pairs in optical lattices have been reported, but have not
yet addressed superfluid behavior. Here we show that when a condensate of
fermionic atom pairs was released from an optical lattice, distinct
interference peaks appear, implying long range order, a property of a
superfluid. Conceptually, this implies that strong s-wave pairing and
superfluidity have now been established in a lattice potential, where the
transport of atoms occurs by quantum mechanical tunneling and not by simple
propagation. These observations were made for unitarity limited interactions on
both sides of a Feshbach resonance. For larger lattice depths, the coherence
was lost in a reversible manner, possibly due to a superfluid to insulator
transition. Such strongly interacting fermions in an optical lattice can be
used to study a new class of Hamiltonians with interband and atom-molecule
couplings.Comment: accepted for publication in Natur
Production of a chromium Bose-Einstein condensate
The recent achievement of Bose-Einstein condensation of chromium atoms [1]
has opened longed-for experimental access to a degenerate quantum gas with
long-range and anisotropic interaction. Due to the large magnetic moment of
chromium atoms of 6 {}B, in contrast to other Bose- Einstein condensates
(BECs), magnetic dipole-dipole interaction plays an important role in a
chromium BEC. Many new physical properties of degenerate gases arising from
these magnetic forces have been predicted in the past and can now be studied
experimentally. Besides these phenomena, the large dipole moment leads to a
breakdown of standard methods for the creation of a chromium BEC. Cooling and
trapping methods had to be adapted to the special electronic structure of
chromium to reach the regime of quantum degeneracy. Some of them apply
generally to gases with large dipolar forces. We present here a detailed
discussion of the experimental techniques which are used to create a chromium
BEC and alow us to produce pure condensates with up to {} atoms in an
optical dipole trap. We also describe the methods used to determine the
trapping parameters.Comment: 17 pages, 9 figure
Tomato protoplast DNA transformation: physical linkage and recombination of exogenous DNA sequences
Tomato protoplasts have been transformed with plasmid DNA's, containing a chimeric kanamycin resistance gene and putative tomato origins of replication. A calcium phosphate-DNA mediated transformation procedure was employed in combination with either polyethylene glycol or polyvinyl alcohol. There were no indications that the tomato DNA inserts conferred autonomous replication on the plasmids. Instead, Southern blot hybridization analysis of seven kanamycin resistant calli revealed the presence of at least one kanamycin resistance locus per transformant integrated in the tomato nuclear DNA. Generally one to three truncated plasmid copies were found integrated into the tomato nuclear DNA, often physically linked to each other. For one transformant we have been able to use the bacterial ampicillin resistance marker of the vector plasmid pUC9 to 'rescue' a recombinant plasmid from the tomato genome. Analysis of the foreign sequences included in the rescued plasmid showed that integration had occurred in a non-repetitive DNA region. Calf-thymus DNA, used as a carrier in transformation procedure, was found to be covalently linked to plasmid DNA sequences in the genomic DNA of one transformant. A model is presented describing the fate of exogenously added DNA during the transformation of a plant cell. The results are discussed in reference to the possibility of isolating DNA sequences responsible for autonomous replication in tomato.
Multiple agency perspective, family control, and private information abuse in an emerging economy
Using a comprehensive sample of listed companies in Hong Kong this paper investigates how family control affects private information abuses and firm performance in emerging economies. We combine research on stock market microstructure with more recent studies of multiple agency perspectives and argue that family ownership and control over the board increases the risk of private information abuse. This, in turn, has a negative impact on stock market performance. Family control is associated with an incentive to distort information disclosure to minority shareholders and obtain private benefits of control. However, the multiple agency roles of controlling families may have different governance properties in terms of investors’ perceptions of private information abuse. These findings contribute to our understanding of the conflicting evidence on the governance role of family control within a multiple agency perspectiv
A Geographically-Restricted but Prevalent Mycobacterium tuberculosis Strain Identified in the West Midlands Region of the UK between 1995 and 2008
Background: We describe the identification of, and risk factors for, the single most prevalent Mycobacterium tuberculosis strain in the West Midlands region of the UK.Methodology/Principal Findings: Prospective 15-locus MIRU-VNTR genotyping of all M. tuberculosis isolates in the West Midlands between 2004 and 2008 was undertaken. Two retrospective epidemiological investigations were also undertaken using univariable and multivariable logistic regression analysis. The first study of all TB patients in the West Midlands between 2004 and 2008 identified a single prevalent strain in each of the study years (total 155/3,056 (5%) isolates). This prevalent MIRU-VNTR profile (32333 2432515314 434443183) remained clustered after typing with an additional 9-loci MIRU-VNTR and spoligotyping. The majority of these patients (122/155, 79%) resided in three major cities located within a 40 km radius. From the apparent geographical restriction, we have named this the "Mercian" strain. A multivariate analysis of all TB patients in the West Midlands identified that infection with a Mercian strain was significantly associated with being UK-born (OR = 9.03, 95% CI = 4.56-17.87, p 65 years old (OR = 0.25, 95% CI = 0.09-0.67, p < 0.01). A second more detailed investigation analyzed a cohort of 82 patients resident in Wolverhampton between 2003 and 2006. A significant association with being born in the UK remained after a multivariate analysis (OR = 9.68, 95% CI = 2.00-46.78, p < 0.01) and excess alcohol intake and cannabis use (OR = 6.26, 95% CI = 1.45-27.02, p = .01) were observed as social risk factors for infection.Conclusions/Significance: The continued consistent presence of the Mercian strain suggests ongoing community transmission. Whilst significant associations have been found, there may be other common risk factors yet to be identified. Future investigations should focus on targeting the relevant risk groups and elucidating the biological factors that mediate continued transmission of this strain
- …
