27 research outputs found

    Prey resources are equally important as climatic conditions for predicting the distribution of a broad-ranged apex predator

    Get PDF
    Aim A current biogeographic paradigm states that climate regulates species distributions at continental scales and that biotic interactions are undetectable at coarse-grain extents. However, advances in spatial modelling show that incorporating food resource distributions are important for improving model predictions at large distribution scales. This is particularly relevant to understand the factors limiting distribution of widespread apex predators whose diets are likely to vary across their range. Location Neotropical Central and South America Methods The harpy eagle (Harpia harpyja) is a large raptor, whose diet is largely comprised of arboreal mammals, all with broad distributions across Neotropical lowland forest. Here, we used a hierarchical modelling approach to determine the relative importance of abiotic factors and prey resource distribution on harpy eagle range limits. Our hierarchical approach consisted of the following modelling sequence of explanatory variables: (a) abiotic covariates, (b) prey resource distributions predicted by an equivalent modelling for each prey, (c) the combination of (a) and (b), and (d) as in (c) but with prey resources considered as a single prediction equivalent to prey species richness. Results Incorporating prey distributions improved model predictions but using solely biotic covariates still resulted in a high performing model. In the Abiotic model, Climatic Moisture Index (CMI) was the most important predictor, contributing 76 % to model prediction. Three-toed sloth (Bradypus spp.) was the most important prey resource, contributing 64 % in a combined Abiotic-Biotic model, followed by CMI contributing 30 %. Harpy eagle distribution had high environmental overlap across all individual prey distributions, with highest coincidence through Central America, eastern Colombia, and across the Guiana Shield into northern Amazonia. Main conclusions With strong reliance on prey distributions across its range, harpy eagle conservation programs must therefore consider its most important food resources as a key element in the protection of this threatened raptor

    The analysis of European lacquer : optimization of thermochemolysis temperature of natural resins

    Get PDF
    In order to optimize chromatographic analysis of European lacquer, thermochemolysis temperature was evaluated for the analysis of natural resins. Five main ingredients of lacquer were studied: sandarac, mastic, colophony, Manila copal and Congo copal. For each, five temperature programs were tested: four fixed temperatures (350, 480, 550, 650 degrees C) and one ultrafast thermal desorption (UFD), in which the temperature rises from 350 to 660 degrees C in 1 min. In total, the integrated signals of 27 molecules, partially characterizing the five resins, were monitored to compare the different methods. A compromise between detection of compounds released at low temperatures and compounds formed at high temperatures was searched. 650 degrees C is too high for both groups, 350 degrees C is best for the first, and 550 degrees C for the second. Fixed temperatures of 480 degrees C or UFD proved to be a consensus in order to detect most marker molecules. UFD was slightly better for the molecules released at low temperatures, while 480 degrees C showed best compounds formed at high temperatures

    Organization of Excitable Dynamics in Hierarchical Biological Networks

    Get PDF
    This study investigates the contributions of network topology features to the dynamic behavior of hierarchically organized excitable networks. Representatives of different types of hierarchical networks as well as two biological neural networks are explored with a three-state model of node activation for systematically varying levels of random background network stimulation. The results demonstrate that two principal topological aspects of hierarchical networks, node centrality and network modularity, correlate with the network activity patterns at different levels of spontaneous network activation. The approach also shows that the dynamic behavior of the cerebral cortical systems network in the cat is dominated by the network's modular organization, while the activation behavior of the cellular neuronal network of Caenorhabditis elegans is strongly influenced by hub nodes. These findings indicate the interaction of multiple topological features and dynamic states in the function of complex biological networks
    corecore