9,134 research outputs found

    Tunnel and thermal c-axis transport in BSCCO in the normal and pseudogap state

    Full text link
    We consider the problem of c-axis transport in double-layered cuprates, in particular with reference to Bi2_{2}Sr2_{2}CaCu2_{2}O8+δ_{8+\delta} compounds. We exploit the effect of the two barriers on the thermal and tunnel transport. The resulting model is able to describe accurately the normal state c-axis resistivity in Bi2_{2}Sr2_{2}CaCu2_{2}O8+δ_{8+\delta}, from the underdoped side up to the strongly overdoped. We extend the model, without introducing additional parameters, in order to allow for the decrease of the barrier when an external voltage bias is applied. The extended model is found to describe properly the c-axis resistivity for small voltage bias above the pseudogap temperature TT^{*}, the c-axis resistivity for large voltage bias even below TcT_c, and the differential dI/dVdI/dV curves taken in mesa structures.Comment: 12 pages, 6 figures. Submitted to Superconductor Science and Technolog

    On the General Kerr/CFT Correspondence in Arbitrary Dimensions

    Full text link
    We study conformal symmetries on the horizon of a general stationary and axisymmetric black hole. We find that there exist physically reasonable boundary conditions that uniquely determine a set of symmetry generators, which form one copy of the Virasoro algebra. For extremal black holes, Cardy's formula reproduces exactly the Bekenstein-Hawking entropy.Comment: 17 page

    Theory of Scanning Tunneling Spectroscopy of a Magnetic Adatom on a Metallic Surface

    Full text link
    A comprehensive theory is presented for the voltage, temperature, and spatial dependence of the tunneling current between a scanning tunneling microscope (STM) tip and a metallic surface with an individual magnetic adatom. Modeling the adatom by a nondegenerate Anderson impurity, a general expression is derived for a weak tunneling current in terms of the dressed impurity Green function, the impurity-free surface Green function, and the tunneling matrix elements. This generalizes Fano's analysis to the interacting case. The differential-conductance lineshapes seen in recent STM experiments with the tip directly over the magnetic adatom are reproduced within our model, as is the rapid decay, \sim 10\AA, of the low-bias structure as one moves the tip away from the adatom. With our simple model for the electronic structure of the surface, there is no dip in the differential conductance at approximately one lattice spacing from the magnetic adatom, but rather we see a resonant enhancement. The formalism for tunneling into small clusters of magnetic adatoms is developed.Comment: 12 pages, 9 figures; to appear in Phys. Rev.

    Currents and Superpotentials in classical gauge theories: II. Global aspects and the example of Affine gravity

    Full text link
    The conserved charges associated to gauge symmetries are defined at a boundary component of space-time because the corresponding Noether current can be rewritten on-shell as the divergence of a superpotential. However, the latter is afflicted by ambiguities. Regge and Teitelboim found a procedure to lift the arbitrariness in the Hamiltonian framework. An alternative covariant formula was proposed by one of us for an arbitrary variation of the superpotential, it depends only on the equations of motion and on the gauge symmetry under consideration. Here we emphasize that in order to compute the charges, it is enough to stay at a boundary of spacetime, without requiring any hypothesis about the bulk or about other boundary components, so one may speak of holographic charges. It is well known that the asymptotic symmetries that lead to conserved charges are really defined at infinity, but the choice of boundary conditions and surface terms in the action and in the charges is usually determined through integration by parts whereas each component of the boundary should be considered separately. We treat the example of gravity (for any space-time dimension, with or without cosmological constant), formulated as an Affine theory which is a natural generalization of the Palatini and Cartan-Weyl (vielbein) first order formulations. We then show that the superpotential associated to a Dirichlet boundary condition on the metric (the one needed to treat asymptotically flat or AdS spacetimes) is the one proposed by Katz, Bi\u{c}{\'a}k and Lynden-Bell and not that of Komar. We finally discuss the KBL superpotential at null infinity.Comment: 16 pages, minor corrections and references added. Final version to appear in CQ

    Quantum skyrmions and the destruction of long-range antiferromagnetic order in the high-Tc superconductors La(2-x)Sr(x)CuO(4) and YBa(2)Cu(3)O(6+x)

    Full text link
    We study the destruction of the antiferromagnetic order in the high-Tc superconductors La(2-x)Sr(x)CuO(4) and YBa(2)Cu(3)O(6+x) in the framework of the CP1-nonlinear sigma model formulation of the 2D quantum Heisenberg antiferromagnet. The dopants are introduced as independent fermions with appropriate dispersion relations determined by the shape of the Fermi surface. The energy of skyrmion topological defects, which are shown to be introduced by doping, is used as an order parameter for antiferromagnetic order. We obtain analytic expressions for this as a function of doping which allow us to plot the curves T_N(x_c)\times x_c and M(x)\times x, for both YBCO and LSCO, in good quantitative agreement with the experimental data.Comment: 4 pages, revtex, 5 embeeded figure

    (R)-(-)-carvone and (1R, 4R)-trans-(+)-dihydrocarvone from poiretia latifolia vogel

    Full text link
    The essential oils of Poiretia latifolia Vogel, native and cultivated leaves (Samples A and B, respectively) and native flowers (sample C), were obtained by hydrodistillation and analyzed by GC, GC/MS and chiral phase gas chromatography (CPGC). Twenty-four compounds were identified, representing 99.25, 99.26 and 99.23% of the oils, respectively. The major constituents of the oils were the monoterpenes (S)-(-)-limonene (16.05, 27.60, 15.60%, respectively), (1R, 4R)-trans-(+)-dihydrocarvone (18.05, 0.66 and 77.80%, respectively) and (R)-(-)-carvone (61.05, 64.20 and 4.50%, respectively). The essential oils were evaluated against some strains of Gram (+) and Gram (-) bacteria, and yeast, but displayed only modest antimicrobial activity

    The elastic constants of MgSiO3 perovskite at pressures and temperatures of the Earth's mantle

    Full text link
    The temperature anomalies in the Earth's mantle associated with thermal convection1 can be inferred from seismic tomography, provided that the elastic properties of mantle minerals are known as a function of temperature at mantle pressures. At present, however, such information is difficult to obtain directly through laboratory experiments. We have therefore taken advantage of recent advances in computer technology, and have performed finite-temperature ab initio molecular dynamics simulations of the elastic properties of MgSiO3 perovskite, the major mineral of the lower mantle, at relevant thermodynamic conditions. When combined with the results from tomographic images of the mantle, our results indicate that the lower mantle is either significantly anelastic or compositionally heterogeneous on large scales. We found the temperature contrast between the coldest and hottest regions of the mantle, at a given depth, to be about 800K at 1000 km, 1500K at 2000 km, and possibly over 2000K at the core-mantle boundary.Comment: Published in: Nature 411, 934-937 (2001

    Decomposition and nutrient release of leguminous plants in coffee agroforestry systems.

    Get PDF
    Leguminous plants used as green manure are an important nutrient source for coffee plantations, especially for soils with low nutrient levels. Field experiments were conducted in the Zona da Mata of Minas Gerais State, Brazil to evaluate the decomposition and nutrient release rates of four leguminous species used as green manures (Arachis pintoi, Calopogonium mucunoides, Stizolobium aterrimum and Stylosanthes guianensis) in a coffee agroforestry system under two different climate conditions. The initial N contents in plant residues varied from 25.7 to 37.0 g kg-1 and P from 2.4 to 3.0 g kg-1. The lignin/N, lignin/polyphenol and(lignin+polyphenol)/N ratios were low in all residues studied. Mass loss rates were highest in the first 15 days, when 25 % of the residues were decomposed. From 15 to 30 days, the decomposition rate decreased on both farms. On the farm in Pedra Dourada (PD), the decomposition constant k increased in the order C. mucunoides < S. aterrimum < S. guianensis < A. pintoi. On the farm in Araponga (ARA), there was no difference in the decomposition rate among leguminous plants. The N release rates varied from 0.0036 to 0.0096 d-1. Around 32 % of the total N content in the plant material was released in the first 15 days. In ARA, the N concentration in the S. aterrimum residues was always significantly higher than in the other residues. At the end of 360 days, the N released was 78 % in ARA and 89 % in PD of the initial content. Phosphorus was the most rapidly released nutrient (k values from 0.0165 to 0.0394 d-1). Residue decomposition and nutrient release did not correlate with initial residue chemistry and biochemistry, but differences in climatic conditions between the two study sites modified the decomposition rate constants

    Instability of the marginal commutative model of tunneling centers interacting with metallic environment: Role of the electron-hole symmetry breaking

    Full text link
    The role of the electron-hole symmetry breaking is investigated for a symmetrical commutative two-level system in a metal using the multiplicative renormalization group in a straightforward way. The role of the symmetries of the model and the path integral technique are also discussed in detail. It is shown that the electron-hole symmetry breaking may make the model non-commutative and generate the assisted tunneling process which is, however, too small itself to drive the system into the vicinity of the two-channel Kondo fixed point. While these results are in qualitative agreement with those of Moustakas and Fisher (Phys. Rev. B 51, 6908 (1995), ibid 53, 4300 (1996)) the scaling equations turn out to be essentially different. We show that the main reason for this difference is that the procedure for the elimination of the high energy degrees of freedom used by Moustakas and Fisher leaves only the free energy invariant, however, the couplings generated are not connected to the dynamical properties in a straightforward way and should be interpreted with care. These latter results might have important consequences in other cases where the path integral technique is used to produce the scaling equations and calculate physical quantities.Comment: latex, figures in ps file adde
    corecore