1,513 research outputs found
Oscillations of the magnetic polarization in a Kondo impurity at finite magnetic fields
The electronic properties of a Kondo impurity are investigated in a magnetic
field using linear response theory. The distribution of electrical charge and
magnetic polarization are calculated in real space. The (small) magnetic field
does not change the charge distribution. However, it unmasks the Kondo cloud.
The (equal) weight of the d-electron components with their magnetic moment up
and down is shifted and the compensating s-electron clouds don't cancel any
longer (a requirement for an experimental detection of the Kondo cloud). In
addition to the net magnetic polarization of the conduction electrons an
oscillating magnetic polarization with a period of half the Fermi wave length
is observed. However, this oscillating magnetic polarization does not show the
long range behavior of Rudermann-Kittel-Kasuya-Yosida oscillations because the
oscillations don't extend beyond the Kondo radius. They represent an internal
electronic structure of the Kondo impurity in a magnetic field. PACS: 75.20.Hr,
71.23.An, 71.27.+
Functional Integral Approach to the Single Impurity Anderson Model
Recently, a functional integral representation was proposed by Weller
(Weller, W.: phys.~stat.~sol.~(b) {\bf 162}, 251 (1990)), in which the
fermionic fields strictly satisfy the constraint of no double occupancy at each
lattice site. This is achieved by introducing spin dependent Bose fields. The
functional integral method is applied to the single impurity Anderson model
both in the Kondo and mixed-valence regime. The f-electron Green's function and
susceptibility are calculated using an Ising-like representation for the Bose
fields. We discuss the difficulty to extract a spectral function from the
knowledge of the imaginary time Green's function. The results are compared with
NCA calculations.Comment: 11 pages, LaTeX, figures upon request, preprint No. 93/10/
Enhancement of the Two-channel Kondo Effect in Single-Electron boxes
The charging of a quantum box, coupled to a lead by tunneling through a
single resonant level, is studied near the degeneracy points of the Coulomb
blockade. Combining Wilson's numerical renormalization-group method with
perturbative scaling approaches, the corresponding low-energy Hamiltonian is
solved for arbitrary temperatures, gate voltages, tunneling rates, and energies
of the impurity level. Similar to the case of a weak tunnel barrier, the shape
of the charge step is governed at low temperatures by the non-Fermi-liquid
fixed point of the two-channel Kondo effect. However, the associated Kondo
temperature TK is strongly modified. Most notably, TK is proportional to the
width of the level if the transmission through the impurity is close to unity
at the Fermi energy, and is no longer exponentially small in one over the
tunneling matrix element. Focusing on a particle-hole symmetric level, the
two-channel Kondo effect is found to be robust against the inclusion of an
on-site repulsion on the level. For a large on-site repulsion and a large
asymmetry in the tunneling rates to box and to the lead, there is a sequence of
Kondo effects: first the local magnetic moment that forms on the level
undergoes single-channel screening, followed by two-channel overscreening of
the charge fluctuations inside the box.Comment: 21 pages, 19 figure
An ansatz for the nonlinear Demkov-Kunike problem for cold molecule formation
We study nonlinear mean-field dynamics of ultracold molecule formation in the
case when the external field configuration is defined by the level-crossing
Demkov-Kunike model, characterized by a bell-shaped coupling and finite
variation of the detuning. Analyzing the fast sweep rate regime of the strong
interaction limit, which models a situation when the peak value of the coupling
is large enough and the resonance crossing is sufficiently fast, we construct a
highly accurate ansatz to describe the temporal dynamics of the molecule
formation in the mentioned interaction regime. The absolute error of the
constructed approximation is less than 3*10^-6 for the final transition
probability while at certain time points it might increase up to 10^-3.
Examining the role of the different terms in the constructed approximation, we
prove that in the fast sweep rate regime of the strong interaction limit the
temporal dynamics of the atom-molecule conversion effectively consists of the
process of resonance crossing, which is governed by a nonlinear equation,
followed by atom-molecular coherent oscillations which are basically described
by a solution of the linear problem, associated with the considered nonlinear
one.Comment: Accepted for publication in J. Contemp. Phys. (Armenian National
Academy of Sciences) 8 pages, 4 figure
Can brewer-sponsored ‘drink responsibly’ warning message be effective without alcohol policies in Nigeria?
Alcohol availability, use and misuse and their related problems are rising in many parts of the African continent and this has been attributed to many factors such as non-existent or ineffective regulatory measures. In contemporary Nigeria, while a culture of intoxication is growing, there are no regulatory measures in the form of alcohol policies to reduce it. What exists is brewer-sponsored self-regulation. This paper therefore, critically analyses this self-imposed 'drink responsibly' warning message, arguing that because responsible drinking messages are strategically designed to serve the interest of alcohol industries, it cannot be effective. The paper further argues that because there are no definitions of standard drinks and where alcohol by volume (ABV) is scarcely inscribed on product labels of alcoholic beverages, such message will remain ineffective. Therefore, it recommends that an urgent step should be taken by the government to formulate and implement comprehensive evidence-based alcohol policies in Nigeria
Technological Devices in the Archives: A Policy Analysis
Doing research in the archive is the cornerstone of humanities scholarship.
Various archives institute policies regarding the use of technological
devices, such as mobile phones, laptops, and cameras in their reading rooms.
Such policies directly affect the scholars as the devices mediate the nature of
their interaction with the source materials in terms of capturing, organizing,
note taking, and record keeping for future use of found materials. In this paper,
we present our analysis of the policies of thirty archives regarding the use of
technology in their reading rooms. This policy analysis, along with data from
interviews of scholars and archivists, is intended to serve as a basis for developing
mobile applications for assisting scholars in their research activities. In this
paper we introduce an early prototype of such a mobile application—
AMTracker.Informatio
Differentiating normal and problem gambling: a grounded theory approach.
A previous study (Ricketts & Macaskill, 2003) delineated a theory of problem gambling based on the experiences of treatment seeking male gamblers and allowed predictions to be made regarding the processes that differentiate between normal and problem gamblers. These predictions are the focus of the present study, which also utilised a grounded theory approach, but with a sample of male high frequency normal gamblers. The findings suggest that there are common aspects of gambling associated with arousal and a sense of achievement. The use of gambling to manage negative emotional states differentiated normal and problem gambling. Perceived self-efficacy , emotion management skills and perceived likelihood of winning money back were intervening variables differentiating problem and normal gamblers.</p
Entanglement between a qubit and the environment in the spin-boson model
The quantitative description of the quantum entanglement between a qubit and
its environment is considered. Specifically, for the ground state of the
spin-boson model, the entropy of entanglement of the spin is calculated as a
function of , the strength of the ohmic coupling to the environment,
and , the level asymmetry. This is done by a numerical
renormalization group treatment of the related anisotropic Kondo model. For
, the entanglement increases monotonically with , until it
becomes maximal for . For fixed , the entanglement
is a maximum as a function of for a value, .Comment: 4 pages, 3 figures. Shortened version restricted to groundstate
entanglemen
Boundary-crossing identities for diffusions having the time-inversion property
We review and study a one-parameter family of functional transformations, denoted by (S (β)) β∈ℝ, which, in the case β<0, provides a path realization of bridges associated to the family of diffusion processes enjoying the time-inversion property. This family includes Brownian motions, Bessel processes with a positive dimension and their conservative h-transforms. By means of these transformations, we derive an explicit and simple expression which relates the law of the boundary-crossing times for these diffusions over a given function f to those over the image of f by the mapping S (β), for some fixed β∈ℝ. We give some new examples of boundary-crossing problems for the Brownian motion and the family of Bessel processes. We also provide, in the Brownian case, an interpretation of the results obtained by the standard method of images and establish connections between the exact asymptotics for large time of the densities corresponding to various curves of each family
Magnetic and Dynamic Properties of the Hubbard Model in Infinite Dimensions
An essentially exact solution of the infinite dimensional Hubbard model is
made possible by using a self-consistent mapping of the Hubbard model in this
limit to an effective single impurity Anderson model. Solving the latter with
quantum Monte Carlo procedures enables us to obtain exact results for the one
and two-particle properties of the infinite dimensional Hubbard model. In
particular we find antiferromagnetism and a pseudogap in the single-particle
density of states for sufficiently large values of the intrasite Coulomb
interaction at half filling. Both the antiferromagnetic phase and the
insulating phase above the N\'eel temperature are found to be quickly
suppressed on doping. The latter is replaced by a heavy electron metal with a
quasiparticle mass strongly dependent on doping as soon as . At half
filling the antiferromagnetic phase boundary agrees surprisingly well in shape
and order of magnitude with results for the three dimensional Hubbard model.Comment: 32 page
- …
