101,415 research outputs found

    High current lightning test of space shuttle external tank lightning protection system

    Get PDF
    During lift-off, the shuttle launch vehicle (external tank, solid rocket booster and orbiter) may be subjected to a lightning strike. Tests of a proposed lightning protection method for the external tank and development materials which were subjected to simulated lightning strikes are described. Results show that certain of the high resistant paint strips performed remarkably well in diverting the 50 kA lightning strikes

    Effect of geometry and operating conditions on spur gear system power loss

    Get PDF
    The results of an analysis of the effects of spur gear size, pitch, width, and ratio on total mesh power loss for a wide range of speeds, torques, and oil viscosities are presented. The analysis uses simple algebraic expressions to determine gear sliding, rolling, and windage losses and also incorporates an approximate ball bearing power loss expression. The analysis shows good agreement with published data. Large diameter and fine pitched gears had higher peak efficiencies but low part load efficiency. Gear efficiencies were generally greater than 98 percent except at very low torque levels. Tare (no-load) losses are generally a significant percentage of the full load loss except at low speeds

    Uptake of nitrate and sulfate on dust aerosols during TRACE-P

    Get PDF
    Aerosol data collected near Asia on the DC-8 aircraft platform during TRACE-P has been examined for evidence of uptake of NO3− and SO4= on dust surfaces. Data is compared between a sector where dust was predominant and a sector where dust was less of an influence. Coincident with dust were higher mixing ratios of anthropogenic pollutants. HNO3, SO2, and CO were higher in the dust sector than the nondust sector by factors of 2.7, 6.2, and 1.5, respectively. The colocation of dust and pollution sources allowed for the uptake of NO3−and nss-SO4= on the coarse dust aerosols, increasing the mixing ratios of these particulates by factors of 5.7 and 2.6 on average. There was sufficient nss-SO4= to take up all of the NH4+present, with enough excess nss-SO4= to also react with dust CaCO3. This suggests that the enhanced NO3− was not in fine mode NH4NO3. Particulate NO3− (p-NO3−) constituted 54% of the total NO3− (t-NO3−) on average, reaching a maximum of 72% in the dust sector. In the nondust sector, p-NO3− contributed 37% to t-NO3−, likely due to the abundance of sea salts there. In two other sectors where the influence of dust and sea salt were minimal, p-NO3−accounted for \u3c15% of t-NO3−

    Spur-Gear-System Efficiency at Part and Full Load

    Get PDF
    A simple method for predicting the part- and full-load power loss of a steel spur gearset of arbitrary geometry supported by ball bearings is described. The analysis algebraically accounts for losses due to gear sliding, rolling traction, and windage in addition to support-ball-bearing losses. The analysis compares favorably with test data. A theoretical comparison of the component losses indicates that losses due to gear rolling traction, windage, and support bearings are significant and should be included along with gear sliding loss in a calculation of gear-system power loss

    Comparison of spur gear efficiency prediction methods

    Get PDF
    The predictions of five spur-gear efficiency calculation methods were compared with three sets of test data using different gear geometries. The data and the analysis methods were limited to jet lubricated, ground, spur gears. The data covered a range in pitch line velocity to 1 to 20 m/sec (200 to 4000 ft/min) and K-load factor range of 17 to 1600

    Efficiency of nonstandard and high contact ratio involute spur gears

    Get PDF
    A power loss prediction was extended to include involute spur gears of nonstandard proportions. The method is used to analyze the effects of modified addendum, tooth thickness, and gear center distance in addition to the parameters previously considered which included gear diameter, pitch, pressure angle, face width, oil viscosity, speed, and torque. Particular emphasis was placed on high contact ratio gearing (contact ratios greater than two). Despite their higher sliding velocities, high contact ratio gears are designed to levels of efficiency comparable to those of conventional gears while retaining their advantages through proper selection of gear geometry

    Numerical simulation of flows in curved diffusers with cross-sectional transitioning using a three-dimensional viscous analysis

    Get PDF
    A three dimensional analysis for fully viscous, subsonic, compressible flow is evaluated. An approximate form of the Navier Stokes equations is solved by an implicit spatial marching technique. Calculations were made for flow in a circular S duct and in the F 16 inlet duct. The computed total pressure contours and secondary flow velocity vectors are presented. Qualitative comparisons with experiment are shown for both ducts. The analysis is used to show how the cross section transitioning in the F 16 inlet suppresses the development of a secondary flow vortex

    Design of Spur Gears for Improved Efficiency

    Get PDF
    A method to calculate spur gear system loss for a wide range of gear geometries and operating conditions was used to determine design requirements for an efficient gearset. The effects of spur gear size, pitch, ratio, pitch line velocity and load on efficiency were determined. Peak efficiencies were found to be greater for large diameter and fine pitched gears and tare (no-load) losses were found to be significant

    Methods of assessing structural integrity for space shuttle vehicles

    Get PDF
    A detailed description and evaluation of nondestructive evaluation (NDE) methods are given which have application to space shuttle vehicles. Appropriate NDE design data is presented in twelve specifications in an appendix. Recommendations for NDE development work for the space shuttle program are presented

    Interactive calculation procedure for supersonic flows

    Get PDF
    An interactive procedure was developed for supersonic viscous flows that can be used for either two-dimensional or axisymmetric configurations. The procedure is directed to supersonic internal flows as well as those supersonic external flows that require consideration of mutual interaction between the outer flow and the boundary layer flow. The flow field is divided into two regions: an inner region which is highly viscous and mostly subsonic and an outer region where the flow is supersonic and in which viscous effects are small but not negligible. For the outer region a numerical solution is obtained by applying the method of characteristics to a system of equations which includes viscous and conduction transport terms only normal to the streamlines. The inner region is treated by a system of equations of the boundary layer type that includes higher order effects such as longitudinal and transverse curvature and normal pressure gradients. These equations are coupled and solved simultaneously in the physical coordinates by using an implicit finite difference scheme. This system can also be used to calculate laminar and turbulent boundary layers using a scalar eddy viscosity concept
    • …
    corecore