160,628 research outputs found
A method for calculating the effects of design errors and measurement errors on pump performance
Technique has been developed for calculating effects of design errors and measurement errors on pump performance. Error equations and charts are utilized to relate amount of error in given performance parameter to amount of error in given design or measured variable. Error equations were derived primarily for axial flow pumps, but are not limited to axial flow
Borel singularities at small x
D.I.S. at small Bjorken is considered within the dipole cascade
formalism. The running coupling in impact parameter space is introduced in
order to parametrize effects that arise from emission of large size dipoles.
This results in a new evolution equation for the dipole cascade. Strong
coupling effects are analyzed after transforming the evolution equation in
Borel () space. The Borel singularities of the solution are discussed first
for the universal part of the dipole cascade and then for the specific process
of D.I.S. at small . In the latter case the leading infrared renormalon is
at indicating the presence of power corrections for the
small- structure functions.Comment: 5 pages, Latex (Talk presented at DIS'97, Chicago, IL
Open Cow Replacement Decisions: an Application of Asset Replacement Theory
Beef producers must decide what to do with a cow that fails to conceive during the breeding season. Keeping the open cow results in a years expenses without any revenue. Replacing the open cow with a bred heifer provides immediate revenue although it will take a few years before the heifer reaches peak productivity. A net present value framework is employed to examine this decision. The problem is unique because the open cow and the replacement heifer have different life spans. Finding a common timeframe is impossible since both alternatives will eventually employ replacement heifers if a long enough time frame is considered.Livestock Production/Industries,
Plasma wave observations near the plasmapause with the S3-A satellite
The electric field noise phenomena is described which was observed by the S3-A spacecraft near the plasmapause during the magnetic storm of 16 to 17 December, 1971. The occurrence is noted of a region of intense, low frequency (20 Hz to 500 Hz) electrostatic noise bursts just outside the plasmapause boundary. These noise bursts occurred concurrent with the rapid decrease in 24.3 or = E or = 35.1 keV ring current protons mirroring near the equator during this storm and may be responsible for the pitch angle diffusion and loss of these particles. The characteristics of other phenomena, such as whistlers, ELF hiss, and banded chorus, observed near the plasmapause during this period are also discussed
A study to examine the feasibility of using surface penetrators for mineral exploration
The feasibility of using penetrators in earth applications is examined. Penetrator applications in exploration for mineral resources only is summarized. Instrumentation for future penetrators is described. Portions of this report are incorporated into a more extensive report examining other penetrator applications in exploration for fossil fuels, geothermal resources, and in environmental and engineering problems, which is to be published as a NASA technical publication
Charge and spin state readout of a double quantum dot coupled to a resonator
State readout is a key requirement for a quantum computer. For
semiconductor-based qubit devices it is usually accomplished using a separate
mesoscopic electrometer. Here we demonstrate a simple detection scheme in which
a radio-frequency resonant circuit coupled to a semiconductor double quantum
dot is used to probe its charge and spin states. These results demonstrate a
new non-invasive technique for measuring charge and spin states in quantum dot
systems without requiring a separate mesoscopic detector
Sensitivity of the magnetic state of a spin lattice on itinerant electron orbital phase
Spatially extended localized spins can interact via indirect exchange
interaction through Friedel oscillations in the Fermi sea. In arrays of
localized spins such interaction can lead to a magnetically ordered phase.
Without external magnetic field such a phase is well understood via a
"two-impurity" Kondo model. Here we employ non-equilibrium transport
spectroscopy to investigate the role of the orbital phase of conduction
electrons on the magnetic state of a spin lattice. We show experimentally, that
even tiniest perpendicular magnetic field can influence the magnitude of the
inter-spin magnetic exchange.Comment: To be published in PhysicaE EP2DS proceedin
Recommended from our members
Preclinical translation of exosomes derived from mesenchymal stem/stromal cells.
Exosomes are nanovesicles secreted by virtually all cells. Exosomes mediate the horizontal transfer of various macromolecules previously believed to be cell-autonomous in nature, including nonsecretory proteins, various classes of RNA, metabolites, and lipid membrane-associated factors. Exosomes derived from mesenchymal stem/stromal cells (MSCs) appear to be particularly beneficial for enhancing recovery in various models of disease. To date, there have been more than 200 preclinical studies of exosome-based therapies in a number of different animal models. Despite a growing number of studies reporting the therapeutic properties of MSC-derived exosomes, their underlying mechanism of action, pharmacokinetics, and scalable manufacturing remain largely outstanding questions. Here, we review the global trends associated with preclinical development of MSC-derived exosome-based therapies, including immunogenicity, source of exosomes, isolation methods, biodistribution, and disease categories tested to date. Although the in vivo data assessing the therapeutic properties of MSC-exosomes published to date are promising, several outstanding questions remain to be answered that warrant further preclinical investigation
- …
