6,331 research outputs found
Exploiting the Symmetry of the Resonator Mode to Enhance PELDOR Sensitivity.
Pulsed electron paramagnetic resonance (EPR) spectroscopy using microwaves at two frequencies can be employed to measure distances between pairs of paramagnets separated by up to 10Â nm. The method, combined with site-directed mutagenesis, has become increasingly popular in structural biology for both its selectivity and capability of providing information not accessible through more standard methods such as nuclear magnetic resonance and X-ray crystallography. Despite these advantages, EPR distance measurements suffer from poor sensitivity. One contributing factor is technical: since 65Â MHz typically separates the pump and detection frequencies, they cannot both be located at the center of the pseudo-Lorentzian microwave resonance of a single-mode resonator. To maximize the inversion efficiency, the pump pulse is usually placed at the center of the resonance, while the observer frequency is placed in the wing, with consequent reduction in sensitivity. Here, we consider an alternative configuration: by spacing pump and observer frequencies symmetrically with respect to the microwave resonance and by increasing the quality factor, valuable improvement in the signal-to-noise ratio can be obtained
Sublethal Stress In Escherichia-Coli - Function Of Salinity
Sublethal stress in Escherichia coli was detected in various test media after exposure (in vitro) to seawater of various salinities. Stress was measured with an electrochemical detection technique and a,-galactosidase assay. Test media included EC medium, medium A-1, and tryptic soy broth modified to contain lactose for /?-galactosidase assay experiments. Stress was defined as the difference between a predicted electrochemical response time calculated for unstarved cells from a standard curve and the observed electrochemical response time for cells starved in seawater. The higher the salinity, the greater the stress for all test media examined. Stress was most pronounced in EC and was attributed primarily to initial die-off of starved cells exposed to the test medium at the elevated temperature of 44.5°C. Lag time and growth rates in test media were not significantly affected by salinity. fl-Galactosidase specific activity, assayed in starved cells after transfer to an induction medium at 44.5°C for 150 min, was inversely related to the salinity of the starved cell suspension. The consequences of these observations with respect to coliform enumeration methods are discussed
Kinematic Modeling of an EAP Actuated Continuum Robot for Active Micro-endoscopy.
International audienceAn active micro-endoscope based on concentric tubes, an emerging class of continuum robots, is presented hereby. It is designed to reach the digestive tube and the stomach for early cancer detection and intervention. The manipulator is constructed from three flexible, telescopic, and actuated tubes. The actuators are based on Electro-Active Polymer electrodes coated and patterned around the tube. A full multi-section kinematic model is developed; it is used to compare the existing constant curvature configuration to the proposed micro-endoscope. That comparison is established according to the reachable workspace and the performance indices. The results are used to prove the effectiveness of the embedded actuation method to reach the workspace more dexterously, which is very useful in medical systems, especially in surgical applications
Direct Observation of the Superfluid Phase Transition in Ultracold Fermi Gases
Water freezes into ice, atomic spins spontaneously align in a magnet, liquid
helium becomes superfluid: Phase transitions are dramatic phenomena. However,
despite the drastic change in the system's behaviour, observing the transition
can sometimes be subtle. The hallmark of Bose-Einstein condensation (BEC) and
superfluidity in trapped, weakly interacting Bose gases is the sudden
appearance of a dense central core inside a thermal cloud. In strongly
interacting gases, such as the recently observed fermionic superfluids, this
clear separation between the superfluid and the normal parts of the cloud is no
longer given. Condensates of fermion pairs could be detected only using
magnetic field sweeps into the weakly interacting regime. The quantitative
description of these sweeps presents a major theoretical challenge. Here we
demonstrate that the superfluid phase transition can be directly observed by
sudden changes in the shape of the clouds, in complete analogy to the case of
weakly interacting Bose gases. By preparing unequal mixtures of the two spin
components involved in the pairing, we greatly enhance the contrast between the
superfluid core and the normal component. Furthermore, the non-interacting
wings of excess atoms serve as a direct and reliable thermometer. Even in the
normal state, strong interactions significantly deform the density profile of
the majority spin component. We show that it is these interactions which drive
the normal-to-superfluid transition at the critical population imbalance of
70(5)%.Comment: 16 pages (incl. Supplemental Material), 5 figure
Magnetic anisotropy reveals Acadian transpressional fabrics in an Appalachian ophiolite (Thetford Mines, Canada)
SUMMARY Magnetic anisotropy has proved effective in characterizing primary, spreading-related magmatic fabrics in Mesozoic (Tethyan) ophiolites, for example in documenting lower oceanic crustal flow. The potential for preservation of primary magnetic fabrics has not been tested, however, in older Palaeozoic ophiolites, where anisotropy may record regional strain during polyphase deformation. Here, we present anisotropy of magnetic susceptibility results from the Ordovician Thetford Mines ophiolite (Canada) that experienced two major phases of post-accretion deformation, during the Taconian and Acadian orogenic events. Magnetic fabrics consistent with modal layering in gabbros are observed at one locality, suggesting that primary fabrics may survive deformation locally in low strain zones. However, at remaining sites rocks with different magmatic origins have consistent magnetic fabrics, reflecting structurally controlled shape preferred orientations of iron-rich phases. Subhorizontal NW-SE-oriented minimum principal susceptibility axes correlate with poles to cleavage observed in overlying post-obduction, pre-Acadian sedimentary formations, indicating that the magnetic foliation in the ophiolite formed during regional NW-SE Acadian shortening. Maximum principal susceptibility axes plunging steeply to the NE are orthogonal to the orientation of regional Acadian fold axes, and are consistent with subvertical tectonic stretching. This magnetic lineation is parallel to the shape preferred orientation of secondary amphibole crystals and is interpreted to reflect grain growth during Acadian dextral transpression. This structural style has been widely reported along the Appalachian orogen, but the magnetic fabric data presented here provide the first evidence for transpression recorded in an Appalachian ophiolite.</jats:p
Determining Training Needs for Cloud Infrastructure Investigations using I-STRIDE
As more businesses and users adopt cloud computing services, security
vulnerabilities will be increasingly found and exploited. There are many
technological and political challenges where investigation of potentially
criminal incidents in the cloud are concerned. Security experts, however, must
still be able to acquire and analyze data in a methodical, rigorous and
forensically sound manner. This work applies the STRIDE asset-based risk
assessment method to cloud computing infrastructure for the purpose of
identifying and assessing an organization's ability to respond to and
investigate breaches in cloud computing environments. An extension to the
STRIDE risk assessment model is proposed to help organizations quickly respond
to incidents while ensuring acquisition and integrity of the largest amount of
digital evidence possible. Further, the proposed model allows organizations to
assess the needs and capacity of their incident responders before an incident
occurs.Comment: 13 pages, 3 figures, 3 tables, 5th International Conference on
Digital Forensics and Cyber Crime; Digital Forensics and Cyber Crime, pp.
223-236, 201
Evidence for Superfluidity of Ultracold Fermions in an Optical Lattice
The study of superfluid fermion pairs in a periodic potential has important
ramifications for understanding superconductivity in crystalline materials.
Using cold atomic gases, various condensed matter models can be studied in a
highly controllable environment. Weakly repulsive fermions in an optical
lattice could undergo d-wave pairing at low temperatures, a possible mechanism
for high temperature superconductivity in the cuprates. The lattice potential
could also strongly increase the critical temperature for s-wave superfluidity.
Recent experimental advances in the bulk include the observation of fermion
pair condensates and high-temperature superfluidity. Experiments with fermions
and bosonic bound pairs in optical lattices have been reported, but have not
yet addressed superfluid behavior. Here we show that when a condensate of
fermionic atom pairs was released from an optical lattice, distinct
interference peaks appear, implying long range order, a property of a
superfluid. Conceptually, this implies that strong s-wave pairing and
superfluidity have now been established in a lattice potential, where the
transport of atoms occurs by quantum mechanical tunneling and not by simple
propagation. These observations were made for unitarity limited interactions on
both sides of a Feshbach resonance. For larger lattice depths, the coherence
was lost in a reversible manner, possibly due to a superfluid to insulator
transition. Such strongly interacting fermions in an optical lattice can be
used to study a new class of Hamiltonians with interband and atom-molecule
couplings.Comment: accepted for publication in Natur
Clockwise rotation of the entire Oman ophiolite occurred in a suprasubduction zone setting
The Oman ophiolite provides a natural laboratory for understanding oceanic lithospheric processes. Previous paleomagnetic and structural investigations have been used to support a model involving rotation of the ophiolite during formation at a mid-oceanic microplate. However, recent geochemical evidence indicates the ophiolite instead formed in a nascent forearc environment, opening the potential for alternative rotation mechanisms. Central to the conundrum is the contrast between ESE to SE magnetizations and NNW magnetizations from the northern and southern ophiolitic massifs respectively, attributed previously to either differential tectonic rotations during spreading or complete emplacement-related remagnetization of the southern massifs. Here we report new paleomagnetic data from lower crustal rocks of the southern massifs that resolve this problem. Sampling of a continuous section in Wadi Abyad reveals ENE magnetizations in the dike rooting zone at the top of the lower crust that change systematically downwards to NNW directions in underlying foliated and layered gabbros. This is only consistent with remagnetization from the base upwards, replacing early remanences in layered and foliated gabbros completely but preserving original ENE magnetizations at higher levels. Comparison with new data from Wadi Khafifah provides a positive fold test that shows this event occurred before late Campanian structural disruption of the regional orientation of the petrologic Moho. These data show that the entire ophiolite experienced large intraoceanic clockwise rotation prior to partial remagnetization, leading to a new tectonic model in which formation, rotation and emplacement of the ophiolite are all linked to Late Cretaceous motion of Arabia and roll-back of the Oman subduction zone
- …