2,660 research outputs found

    The constant current loop: A new paradigm for resistance signal conditioning

    Get PDF
    A practical, single, constant-current loop circuit for the signal conditioning of variable-resistance transducers was synthesized, analyzed, and demonstrated. The strain gage and the resistance temperature device are examples of variable-resistance sensors. Lead wires connect variable-resistance sensors to remotely located signal-conditioning hardware. The presence of lead wires in the conventional Wheatstone bridge signal-conditioning circuit introduces undesired effects that reduce the quality of the data from the remote sensors. A practical approach is presented for suppressing essentially all lead wire resistance effects while indicating only the change in resistance value. Theoretical predictions supported by laboratory testing confirm the following features of the approach: (1) the dc response; (2) the electrical output is unaffected by extremely large variations in the resistance of any or all lead wires; (3) the electrical output remains zero for no change in gage resistance; (4) the electrical output is inherently linear with respect to gage resistance change; (5) the sensitivity is double that of a Wheatstone bridge circuit; and (6) the same excitation and sense wires can serve multiple independent gages. An adaptation of the current loop circuit is presented that simultaneously provides an output signal voltage directly proportional to transducer resistance change and provides temperature information that is unaffected by transducer and lead wire resistance variations. These innovations are the subject of NASA patent applications

    Thermal-structural test facilities at NASA Dryden

    Get PDF
    The National Aero-Space Plane (NASP) has renewed interest in hypersonic flight and hot-structures technology development for both the airframe and engine. The NASA Dryden Thermostructures Research Facility is a unique national facility that was designed to conduct thermal-mechanical tests on aircraft and aircraft components by simulating the flight thermal environment in the laboratory. The layout of the facility is presented, which includes descriptions of the high-bay test area, the instrumentation laboratories, the mechanical loading systems, and the state-of-the-art closed-loop thermal control system. The hot-structures test capability of the facility is emphasized by the Mach-3 thermal simulation conducted on the YF-12 airplane. The Liquid-Hydrogen Structural Test Facility, which is presently in the design phase, will provide the capability of thermally testing structures containing hydrogen

    Constant current loop impedance measuring system that is immune to the effects of parasitic impedances

    Get PDF
    A constant current loop measuring system is provided for measuring a characteristic of an environment. The system comprises a first impedance positionable in the environment, a second impedance coupled in series with said first impedance and a parasitic impedance electrically coupled to the first and second impedances. A current generating device, electrically coupled in series with the first and second impedances, provides a constant current through the first and second impedances to produce first and second voltages across the first and second impedances, respectively, and a parasitic voltage across the parasitic impedance. A high impedance voltage measuring device measures a voltage difference between the first and second voltages independent of the parasitic voltage to produce a characteristic voltage representative of the characteristic of the environment

    The constant current loop: A new paradigm for resistance signal conditioning

    Get PDF
    A practical single constant current loop circuit for the signal conditioning of variable-resistance transducers has been synthesized, analyzed, and demonstrated. The strain gage and the resistance temperature detector are examples of variable-resistance sensors. Lead wires connect variable-resistance sensors to remotely located signal-conditioning hardware. The presence of lead wires in the conventional Wheatstone bridge signal-conditioning circuit introduces undesired effects that reduce the quality of the data from the remote sensors. A practical approach is presented for suppressing essentially all lead wire resistance effects while indicating only the change in resistance value. Theoretical predictions supported by laboratory testing confirm the following features of the approach: (1) dc response; (2) the electrical output is unaffected by extremely large variation in the resistance of any or all lead wires; (3) the electrical output remains zero for no change in gage resistance; (4) the electrical output is inherently linear with respect to gage resistance change; (5) the sensitivity is double that of a Wheatstone bridge circuit; and (6) the same excitation wires can serve multiple independent gages. An adaptation of current loop circuit is presented that simultaneously provides an output signal voltage directly proportional to transducer resistance change and provides temperature information that is unaffected by transducer and lead wire resistance variations. These innovations are the subject of NASA patent applications

    Current loop signal conditioning: Practical applications

    Get PDF
    This paper describes a variety of practical application circuits based on the current loop signal conditioning paradigm. Equations defining the circuit response are also provided. The constant current loop is a fundamental signal conditioning circuit concept that can be implemented in a variety of configurations for resistance-based transducers, such as strain gages and resistance temperature detectors. The circuit features signal conditioning outputs which are unaffected by extremely large variations in lead wire resistance, direct current frequency response, and inherent linearity with respect to resistance change. Sensitivity of this circuit is double that of a Wheatstone bridge circuit. Electrical output is zero for resistance change equals zero. The same excitation and output sense wires can serve multiple transducers. More application arrangements are possible with constant current loop signal conditioning than with the Wheatstone bridge

    A Conversion of Wheatstone Bridge to Current-Loop Signal Conditioning for Strain Gages

    Get PDF
    Current loop circuitry replaced Wheatstone bridge circuitry to signal-condition strain gage transducers in more than 350 data channels for two different test programs at NASA Dryden Flight Research Center. The uncorrected test data from current loop circuitry had a lower noise level than data from comparable Wheatstone bridge circuitry, were linear with respect to gage-resistance change, and were uninfluenced by varying lead-wire resistance. The current loop channels were easier for the technicians to set up, verify, and operate than equivalent Wheatstone bridge channels. Design choices and circuit details are presented in this paper in addition to operational experience

    System for improving measurement accuracy of transducer by measuring transducer temperature and resistance change using thermoelectric voltages

    Get PDF
    A constant current loop measuring system measures a property including the temperature of a sensor responsive to an external condition being measured. The measuring system includes thermocouple conductors connected to the sensor, sensing first and second induced voltages responsive to the external condition. In addition, the measuring system includes a current generator and reverser generating a constant current, and supplying the constant current to the thermocouple conductors in forward and reverse directions generating first and second measured voltages, and a determining unit receiving the first and second measured voltages from the current generator and reverser, and determining the temperature of the sensor responsive to the first and second measured voltages

    Quantum Vortex in a Vectorial Bose-Einstein Condensate

    Full text link
    Quantum vortices in the multi-component Bose-Einstein condensation (BEC) are investigated theoretically. It is found that three kinds of the vortex configurations are possible and their physical properties are discussed in details, including the density distribution and the spin texture. By using the Bogoliubov theory extended to the three component BEC, the collective modes for these vortices are evaluated. The local vortex stability for these vortices are examined in light of the existence of the negative eigenvalue, yielding a narrow magnetization window for the local intrinsic stable region where the multi-components work together to stabilize a vortex in a self-organized way.Comment: 8 pages, 14 eps figure

    Quantized circular motion of a trapped Bose-Einstein condensate: coherent rotation and vortices

    Full text link
    We study the creation of vortex states in a trapped Bose-Einstein condensate by a rotating force. For a harmonic trapping potential the rotating force induces only a circular motion of the whole condensate around the trap center which does not depend on the interatomic interaction. For the creation of a pure vortex state it is necessary to confine the atoms in an anharmonic trapping potential. The efficiency of the creation can be greatly enhanced by a sinusodial variation of the force's angular velocity. We present analytical and numerical calculations for the case of a quartic trapping potential. The physical mechanism behind the requirement of an anharmonic trapping potential for the creation of pure vortex states is explained. [Changes: new numerical and analytical results are added and the representation is improved.]Comment: 13 Pages, 5 Figures, RevTe

    Negotiations of minority ethnic rugby league players in the Cathar country of France

    Get PDF
    This article is based on new empirical, qualitative research with minority ethnic rugby league players in the southwest of France. Drawing on similar research on rugby league in the north and the south of England, the article examines how rugby league, traditionally viewed as a white, working-class male game (Collins, 2006; Denham, 2004; Spracklen, 1995, 2001) has had to re-imagine its symbolic boundaries as they are constituted globally and locally to accommodate the needs of players from minority ethnic backgrounds. In particular, the article examines the sense in which experiences of minority ethnic rugby league players in France compare with those of their counterparts in England (Spracklen, 2001, 2007), how rugby league is used in France to construct identity, and in what sense the norms associated with the imaginary community of rugby league are replicated or challenged by the involvement of minority ethnic rugby league players in France. Questions about what it means to be (provincial, national) French (Kumar, 2006) are posed, questions that relate to the role of sport in the construction of Frenchness, and in particular the role of rugby league (and union). © Copyright ISSA and SAGE Publications
    • 

    corecore