100,435 research outputs found
BEC in Nonextensive Statistical Mechanics
We discuss the Bose-Einstein condensation (BEC) for an ideal gas of bosons in
the framework of Tsallis's nonextensive statistical mechanics. We study the
corrections to the standard BEC formulas due to a weak nonextensivity of the
system. In particular, we consider three cases in the D-dimensional space: the
homogeneous gas, the gas in a harmonic trap and the relativistic homogenous
gas. The results show that small deviations from the extensive Bose statistics
produce remarkably large changes in the BEC transition temperature.Comment: LaTex, 7 pages, no figures, to be published in Mod. Phys. Lett. B;
corrected a typo in Eq. (2
One-Particle Excitation of the Two-Dimensional Hubbard Model
The real part of the self-energy of interacting two-dimensional electrons has
been calculated in the t-matrix approximation. It is shown that the forward
scattering results in an anomalous term leading to the vanishing
renormalization factor of the one-particle Green function, which is a
non-perturbative effect of the interaction U. The present result is a
microscopic demonstration of the claim by Anderson based on the conventional
many-body theory. The effect of the damping of the interacting electrons, which
has been ignored in reaching above conclusion, has been briefly discussed.Comment: 7 pages, LaTeX, 1 figure, uses jpsj.sty, to be published in J. Phys.
Soc. Jpn. 66 No. 3 (1997
Increasing d-wave superconductivity by on site repulsion
We study by Variational Monte Carlo an extended Hubbard model away from half
filled band density which contains two competing nearest-neighbor interactions:
a superexchange favoring d-wave superconductivity and a repulsion
opposing against it. We find that the on-site repulsion effectively
enhances the strength of meanwhile suppressing that of , thus favoring
superconductivity. This result shows that attractions which do not involve
charge fluctuations are very well equipped against strong electron-electron
repulsion so much to get advantage from it.Comment: 4 pages, 3 figure
Detector arrays for low-background space infrared astronomy
The status of development and characterization tests of integrated infrared detector array technology for astronomy applications is described. The devices under development include intrinsic, extrinsic silicon, and extrinsic germanium detectors, with hybrid silicon multiplexers. Laboratory test results and successful astronomy imagery have established the usefulness of integrated arrays in low-background astronomy applications
Mesoscopic Fermi gas in a harmonic trap
We study the thermodynamical properties of a mesoscopic Fermi gas in view of
recent possibilities to trap ultracold atoms in a harmonic potential. We focus
on the effects of shell closure for finite small atom numbers. The dependence
of the chemical potential, the specific heat and the density distribution on
particle number and temperature is obtained. Isotropic and anisotropic traps
are compared. Possibilities of experimental observations are discussed.Comment: 8 pages, 9 eps-figures included, Revtex, submitted to Phys. Rev. A,
minor changes to figures and captions, corrected typo
- …