1,828 research outputs found

    Benthic biomass size spectra in shelf and deep-sea sediments

    Get PDF
    The biomass distributions of marine benthic metazoans (meio- to macro-fauna, 1 ?g–32 mg wet weight) across three contrasting sites were investigated to test the hypothesis that allometry can consistently explain observed trends in biomass spectra. Biomass (and abundance) size spectra were determined from observations made at the Faroe–Shetland Channel (FSC) in the Northeast Atlantic (water depth 1600 m), the Fladen Ground (FG) in the North Sea (150 m), and the hypoxic Oman Margin (OM) in the Arabian Sea (500 m). Observed biomass increased with body size as a power law at FG (scaling exponent, b = 0.16) and FSC (b = 0.32), but less convincingly at OM (b = 0.12 but not significantly different from 0). A simple model was constructed to represent the same 16 metazoan size classes used for the observed spectra, all reliant on a common detrital food pool, and allowing the three key processes of ingestion, respiration and mortality to scale with body size. A micro-genetic algorithm was used to fit the model to observations at the sites. The model accurately reproduces the observed scaling without needing to include the effects of local influences such as hypoxia. Our results suggest that the size-scaling of mortality and ingestion are dominant factors determining the distribution of biomass across the meio- to macrofaunal size range in contrasting marine sediment communities. Both the observations and the model results are broadly in agreement with the "metabolic theory of ecology" in predicting a quarter power scaling of biomass across geometric body size classes

    Diffuse interface modelling of the rheology of immiscible polymer blends

    Get PDF
    The objective of this work is to predict macroscopic properties of polymer blends, such as the first normal stress difference based on the information obtained with simulations of morphology development on a microstructural level. A numerical model, based on a Galerkin spectral element technique,is applied to study morphology development including the kinetics of phase separation in a homogeneous shear flow. The theory of Cahn and Hilliard, describing the free energy of a non-uniform system with local and non-local gradient terms, is used in the framework of non-classical thermodynamics described by de Groot and Mazur. Dependent on the shear rate and the Capillary number different morphologies are found. The results show that the model can deal with breakup and coalescence without any additional decision criteria. Moreover, rheological properties of the different blends are derived and discussed

    Occurrence Statistics of Horse Collar Aurora

    Get PDF
    Horse collar aurora (HCA) are an auroral feature where the dawn and dusk sector auroral oval moves polewards and the polar cap becomes teardrop shaped. They form during prolonged periods of northward interplanetary magnetic field (IMF), when the IMF clock angle is small. Their formation has been linked to dual-lobe reconnection (DLR) closing magnetic flux at the dayside magnetopause. The conditions necessary for DLR are currently not well-understood therefore understanding HCA statistics will allow DLR to be studied in more detail. We have identified over 600 HCA events between 2010 and 2016 in UV images captured by the Special Sensor Ultraviolet Spectrographic Imager instrument on-board the Defense Meteorological Satellite Program spacecraft F16, F17 and F18. As expected, there is a clear preference for HCA occurring during northward IMF. We find no clear seasonal dependence in their occurrence, with an average of 8 HCA events per month. The occurrence of HCA events does not appear to depend on the Bx component of the IMF. Considering the average radiance intensity across the dusk-dawn meridian shows the HCA as a separate bulge inside the auroral oval and that the dawn side arc of the HCA is usually brighter than the dusk in the Lyman-Birge-Hopfield short band. We relate this to the expected field aligned current pattern of HCA formation. We further suggest that transpolar arcs observed in the dawn sector simultaneously in both northern and southern hemispheres are misidentified HCA.publishedVersio

    Developmental pharmacokinetics of morphine and its metabolites in neonates, infants and young children

    Get PDF
    BACKGROUND: Descriptions of the pharmacokinetics and metabolism of morphine and its metabolites in young children are scant. Previous studies have not differentiated the effects of size from those related to age during infancy. METHODS: Postoperative children 0-3 yr old were given an intravenous loading dose of morphine hydrochloride (100 micro g kg(-1) in 2 min) followed by either an intravenous morphine infusion of 10 micro g h(-1) kg(-1) (n=92) or 3-hourly intravenous morphine boluses of 30 micro g kg(-1) (n=92). Additional morphine (5 micro g kg(-1)) every 10 min was given if the visual analogue (VAS, 0-10) pain score was >/=4. Arterial blood (1.4 ml) was sampled within 5 min of the loading dose and at 6, 12 and 24 h for morphine, morphine-3-glucuronide (M3G) and morphine-6-glucuronide (M6G). The disposition of morphine and formation clearances of morphine base to its glucuronide metabolites and their elimination clearances were estimated using non-linear mixed effects models. RESULTS: The analysis used 1856 concentration observations from 184 subjects. Population parameter estimates and their variability (%) for a one-compartment, first-order elimination model were as follows: volume of distribution 136 (59.3) litres, formation clearance to M3G 64.3 (58.8) litres h(-1), formation clearance to M6G 3.63 (82.2) litres h(-1), morphine clearance by other routes 3.12 litres h(-1) per 70 kg, elimination clearance of M3G 17.4 (43.0) litres h(-1), elimination clearance of M6G 5.8 (73.8) litres h(-1). All parameters are standardized to a 70 kg person using allometric 3/4 power models and reflect fully mature adult values. The volume of distribution increased exponentially with a maturation half-life of 26 days from 83 litres per 70 kg at birth; formation clearance to M3G and M6G increased with a maturation half-life of 88.3 days from 10.8 and 0.61 litres h(-1) per 70 kg respectively at birth. Metabolite formation decreased with increased serum bilirubin concentration. Metabolite clearance increased with age (maturation half-life 129 days), and appeared to be similar to that described for glomerular filtration rate maturation in infants. CONCLUSION: M3G is the predominant metabolite of morphine in young children and total body morphine clearance is 80% that of adult values by 6 months. A mean steady-state serum concentration of 10 ng ml(-1) can be achieved in children after non-cardiac surgery in an intensive care unit with a morphine hydrochloride infusion of 5 micro g h(-1) kg(-1) at birth (term neonates), 8.5 micro g h(-1) kg(-1) at 1 month, 13.5 micro g h(-1) kg(-1) at 3 months and 18 micro g h(-1) kg(-1) at 1 year and 16 micro g h(-1) kg(-1) for 1- to 3-yr-old children

    Influence of Off-Sun-Earth Line Distance on the Accuracy of L1 Solar Wind Monitoring

    Get PDF
    Upstream solar wind measurements from near the L1 Lagrangian point are commonly used to investigate solar wind-magnetosphere coupling. The off-Sun-Earth line distance of such solar wind monitors can be large, up to 100 RE. We investigate how the correlation between measurements of the interplanetary magnetic field and associated ionospheric responses deteriorates as the off-Sun-Earth line distance increases. Specifically, we use the magnitude and polarity of the dayside region 0 field-aligned currents (R0 FACs) as a measure of interplanetary magnetic field (IMF) BY-associated magnetic tension effects on newly-reconnected field lines, related to the Svalgaard-Mansurov effect. The R0 FACs are derived from Advanced Magnetosphere and Planetary Electrodynamics Response Experiment measurements by a principal component analysis, for the years 2010–2016. We perform cross-correlation analyses between time-series of IMF BY, measured by the Wind spacecraft and propagated to the nose of the bow shock by the OMNI technique, and these R0 FAC measurements. Typically, in the summer hemisphere, cross-correlation coefficients between 0.6 and 0.9 are found. However, there is a reduction of order 0.1–0.15 in correlation coefficient between periods when Wind is close to (within 45 RE) and distant from (beyond 70 RE) the Sun-Earth line. We find a time-lag of around 17 min between predictions of the arrival of IMF features at the bow shock and their effect in the ionosphere, irrespective of the location of Wind.publishedVersio

    Issues in Research on the Young Chronically III Child

    Full text link
    A major goal of research on chronic illness in children is to determine how the illness interacts with developmental processes. The child must be studied within the context of the family, the school, and the health care system. Problems in research include the use of appropriate control groups and matching on control variables. The generic, or cross-categorical, approach has led to the identification of factors affecting children regardless of particular illness. Adjustment to school depends on coordination of the family and health professionals with personnel within the school.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68724/2/10.1177_027112148600500406.pd

    Optimal generalization of power filters for gravitational wave bursts, from single to multiple detectors

    Full text link
    Searches for gravitational wave signals which do not have a precise model describing the shape of their waveforms are often performed using power detectors based on a quadratic form of the data. A new, optimal method of generalizing these power detectors so that they operate coherently over a network of interferometers is presented. Such a mode of operation is useful in obtaining better detection efficiencies, and better estimates of the position of the source of the gravitational wave signal. Numerical simulations based on a realistic, computationally efficient hierarchical implementation of the method are used to characterize its efficiency, for detection and for position estimation. The method is shown to be more efficient at detecting signals than an incoherent approach based on coincidences between lists of events. It is also shown to be capable of locating the position of the source.Comment: 16 pages, 5 figure

    Lobe Reconnection and Cusp-Aligned Auroral Arcs

    Get PDF
    Following the St. Patrick's Day (17 March) geomagnetic storm of 2013, the interplanetary magnetic field had near-zero clock angle for almost two days. Throughout this period multiple cusp-aligned auroral arcs formed in the polar regions; we present observations of, and provide a new explanation for, this poorly understood phenomenon. The arcs were observed by auroral imagers onboard satellites of the Defense Meteorological Satellite Program. Ionospheric flow measurements and observations of energetic particles from the same satellites show that the arcs were produced by inverted-V precipitation associated with upward field-aligned currents (FACs) at shears in the convection pattern. The large-scale convection pattern revealed by the Super Dual Auroral Radar Network and the corresponding FAC pattern observed by the Active Magnetosphere and Planetary Electrodynamics Response Experiment suggest that dual-lobe reconnection was ongoing to produce significant closure of the magnetosphere. However, we propose that once the magnetosphere became nearly closed complicated lobe reconnection geometries arose that produced interleaving of regions of open and closed magnetic flux and spatial and temporal structure in the convection pattern that evolved on timescales shorter than the orbital period of the DMSP spacecraft. This new model naturally explains many features of cusp-aligned arcs, including why they focus in from the nightside toward the cusp region.publishedVersio
    corecore