25,332 research outputs found

    A computer program for anisotropic shallow-shell finite elements using symbolic integration

    Get PDF
    A FORTRAN computer program for anisotropic shallow-shell finite elements with variable curvature is described. A listing of the program is presented together with printed output for a sample case. Computation times and central memory requirements are given for several different elements. The program is based on a stiffness (displacement) finite-element model in which the fundamental unknowns consist of both the displacement and the rotation components of the reference surface of the shell. Two triangular and four quadrilateral elements are implemented in the program. The triangular elements have 6 or 10 nodes, and the quadrilateral elements have 4 or 8 nodes. Two of the quadrilateral elements have internal degrees of freedom associated with displacement modes which vanish along the edges of the elements (bubble modes). The triangular elements and the remaining two quadrilateral elements do not have bubble modes. The output from the program consists of arrays corresponding to the stiffness, the geometric stiffness, the consistent mass, and the consistent load matrices for individual elements. The integrals required for the generation of these arrays are evaluated by using symbolic (or analytic) integration in conjunction with certain group-theoretic techniques. The analytic expressions for the integrals are exact and were developed using the symbolic and algebraic manipulation language

    The role of binaries in the enrichment of the early Galactic halo. I. r-process-enhanced metal-poor stars

    Full text link
    The detailed chemical composition of most metal-poor halo stars has been found to be highly uniform, but a minority of stars exhibit dramatic enhancements in their abundances of heavy neutron-capture elements and/or of carbon. The key question for Galactic chemical evolution models is whether these peculiarities reflect the composition of the natal clouds, or if they are due to later mass transfer of processed material from a binary companion. If the former case applies, the observed excess of certain elements was implanted within selected clouds in the early ISM from a production site at interstellar distances. Our aim is to determine the frequency and orbital properties of binaries among these chemically peculiar stars. This information provides the basis for deciding whether mass transfer from a binary companion is necessary and sufficient to explain their unusual compositions. This paper discusses our study of a sample of 17 moderately (r-I) and highly (r-II) r-process-element enhanced VMP and EMP stars. High-resolution, low signal-to-noise spectra of the stars were obtained at roughly monthly intervals over 8 years with the FIES spectrograph at the Nordic Optical Telescope. From these spectra, radial velocities with an accuracy of ~100 m/s were determined by cross-correlation against an optimized template. 14 of the programme stars exhibit no significant RV variation over this period, while 3 are binaries with orbits of typical eccentricity for their periods, resulting in a normal binary frequency of ~18+-6% for the sample. Our results confirm our preliminary conclusion from 2011, based on partial data, that the chemical peculiarity of the r-I and r-II stars is not caused by any putative binary companions. Instead, it was imprinted on the natal molecular clouds of these stars by an external, distant source. Models of the ISM in early galaxies should account for such mechanisms.Comment: 14 pages, 3 figures, accepted for publication in Astronomy and Astrophysic

    Discovery of Broad Molecular lines and of Shocked Molecular Hydrogen from the Supernova Remnant G357.7+0.3: HHSMT, APEX, Spitzer and SOFIA Observations

    Full text link
    We report a discovery of shocked gas from the supernova remnant (SNR) G357.7+0.3. Our millimeter and submillimeter observations reveal broad molecular lines of CO(2-1), CO(3-2), CO(4-3), 13CO (2-1) and 13CO (3-2), HCO^+ and HCN using HHSMT, Arizona 12-Meter Telescope, APEX and MOPRA Telescope. The widths of the broad lines are 15-30 kms, and the detection of such broad lines is unambiguous, dynamic evidence showing that the SNR G357.7+0.3 is interacting with molecular clouds. The broad lines appear in extended regions (>4.5'x5'). We also present detection of shocked H2 emission in mid-infrared but lacking ionic lines using the Spitzer IRS observations to map a few arcmin area. The H2 excitation diagram shows a best-fit with a two-temperature LTE model with the temperatures of ~200 and 660 K. We observed [C II] at 158um and high-J CO(11-10) with the GREAT on SOFIA. The GREAT spectrum of [C II], a 3 sigma detection, shows a broad line profile with a width of 15.7 km/s that is similar to those of broad CO molecular lines. The line width of [C~II] implies that ionic lines can come from a low-velocity C-shock. Comparison of H2 emission with shock models shows that a combination of two C-shock models is favored over a combination of C- and J-shocks or a single shock. We estimate the CO density, column density, and temperature using a RADEX model. The best-fit model with n(H2) = 1.7x10^{4} cm^{-3}, N(CO) = 5.6x10^{16} cm^{-2}, and T = 75 K can reproduce the observed millimeter CO brightnesses.Comment: 19 pages, 22 figure

    Time-Dependent Random Walks and the Theory of Complex Adaptive Systems

    Full text link
    Motivated by novel results in the theory of complex adaptive systems, we analyze the dynamics of random walks in which the jumping probabilities are {\it time-dependent}. We determine the survival probability in the presence of an absorbing boundary. For an unbiased walk the survival probability is maximized in the case of large temporal oscillations in the jumping probabilities. On the other hand, a random walker who is drifted towards the absorbing boundary performs best with a constant jumping probability. We use the results to reveal the underlying dynamics responsible for the phenomenon of self-segregation and clustering observed in the evolutionary minority game.Comment: 5 pages, 2 figure

    Phase fluctuations in atomic Bose gases

    Full text link
    We improve on the Popov theory for partially Bose-Einstein condensed atomic gases by treating the phase fluctuations exactly. As a result, the theory becomes valid in arbitrary dimensions and is able to describe the low-temperature crossover between three, two and one-dimensional Bose gases, which is currently being explored experimentally. We consider both homogeneous and trapped Bose gases.Comment: 4 pages. Title changed Major changes involve extension of theory to include trapped Bose gases. Deletion of reference to and comparison with hydrogen experiment. Due to these changes, second author added. Modified manuscript accepted for PR

    Accuracy control in ultra-large-scale electronic structure calculation

    Full text link
    Numerical aspects are investigated in ultra-large-scale electronic structure calculation. Accuracy control methods in process (molecular-dynamics) calculation are focused. Flexible control methods are proposed so as to control variational freedoms, automatically at each time step, within the framework of generalized Wannier state theory. The method is demonstrated in silicon cleavage simulation with 10^2-10^5 atoms. The idea is of general importance among process calculations and is also used in Krylov subspace theory, another large-scale-calculation theory.Comment: 8 pages, 3 figures. To appear in J.Phys. Condens. Matter. A preprint PDF file in better graphics is available at http://fujimac.t.u-tokyo.ac.jp/lses/index_e.htm

    The role of binaries in the enrichment of the early Galactic halo. II. Carbon-Enhanced Metal-Poor Stars - CEMP-no stars

    Full text link
    The detailed composition of most metal-poor halo stars has been found to be very uniform. However, a fraction of 20-70% (increasing with decreasing metallicity) exhibit dramatic enhancements in their abundances of carbon - the so-called carbon-enhanced metal-poor (CEMP) stars. A key question for Galactic chemical evolution models is whether this non-standard composition reflects that of the stellar natal clouds, or is due to local, post-birth mass transfer of chemically processed material from a binary companion; CEMP stars should then all be members of binary systems. Our aim is to determine the frequency and orbital parameters of binaries among CEMP stars with and without over-abundances of neutron-capture elements - CEMP-s and CEMP-no stars, respectively - as a test of this local mass-transfer scenario. This paper discusses a sample of 24 CEMP-no stars, while a subsequent paper will consider a similar sample of CEMP-s stars. Most programme stars exhibit no statistically significant radial-velocit variation over this period and appear to be single, while four are found to be binaries with orbital periods of 300-2,000 days and normal eccentricity; the binary frequency for the sample is 17+-9%. The single stars mostly belong to the recently-identified ``low-C band'', while the binaries have higher absolute carbon abundances. We conclude that the nucleosynthetic process responsible for the strong carbon excess in these ancient stars is unrelated to their binary status; the carbon was imprinted on their natal molecular clouds in the early Galactic ISM by an even earlier, external source, strongly indicating that the CEMP-no stars are likely bona fide second-generation stars. We discuss potential production sites for carbon and its transfer across interstellar distances in the early ISM, and implications for the composition of high-redshift DLA systems. Abridged.Comment: 16 pages, 5 figures, accepted for publication in Astronomy and Astrophysic
    • …
    corecore