425 research outputs found

    Writing Center: Impact analysis Fall 2014 to Fall 2018

    Get PDF
    The Utah State University (USU) Writing Center is dedicated to empowering students to express their knowledge and ideas in writing. Their approach promotes academic inquiry, critical thinking, and expressions of diversity. While research and evaluation suggest that the Writing Center significantly impacts student academic performance, the impact on student persistence is not yet clear. This report explores the association between USU’s Writing Center and students’ persistence toward graduation. METHODS: Students’ Writing Center use was captured through student log-ins at writing appointments. Students who had a record of using the Writing Center were compared to similar students who did not have a record of Writing Center use. Students were matched for comparison using prediction-based propensity score matching. Students were matched with non-users based on their persistence predication and their propensity to participate. FINDINGS: Students were 97% similar following matching. Participating and comparison students were compared using difference-in-difference testing. Students who used the Writing Center were significantly more likely to persist at USU than similar students who did not use the Writing Center (DID = 0.031, p \u3c .001). The unstandardized effect size can be estimated through student impact. It is estimated that Writing Center resources and services assisted in retaining 17 (CI: 3 – 32) students each year who were otherwise not expected to persist

    An efficient arabinoxylan-debranching α-L-arabinofuranosidase of family GH62 from Aspergillus nidulans contains a secondary carbohydrate binding site.

    Get PDF
    An α-L-arabinofuranosidase of GH62 from Aspergillus nidulans FGSC A4 (AnAbf62A-m2,3) has an unusually high activity towards wheat arabinoxylan (WAX) (67 U/mg; k cat = 178/s, K m = 4.90 mg/ml) and arabinoxylooligosaccharides (AXOS) with degrees of polymerisation (DP) 3-5 (37-80 U/mg), but about 50 times lower activity for sugar beet arabinan and 4-nitrophenyl-α-L-arabinofuranoside. α-1,2- and α-1,3-linked arabinofuranoses are released from monosubstituted, but not from disubstituted, xylose in WAX and different AXOS as demonstrated by NMR and polysaccharide analysis by carbohydrate gel electrophoresis (PACE). Mutants of the predicted general acid (Glu(188)) and base (Asp(28)) catalysts, and the general acid pK a modulator (Asp(136)) lost 1700-, 165- and 130-fold activities for WAX. WAX, oat spelt xylan, birchwood xylan and barley β-glucan retarded migration of AnAbf62A-m2,3 in affinity electrophoresis (AE) although the latter two are neither substrates nor inhibitors. Trp(23) and Tyr(44), situated about 30 Å from the catalytic site as seen in an AnAbf62A-m2,3 homology model generated using Streptomyces thermoviolaceus SthAbf62A as template, participate in carbohydrate binding. Compared to wild-type, W23A and W23A/Y44A mutants are less retarded in AE, maintain about 70 % activity towards WAX with K i of WAX substrate inhibition increasing 4-7-folds, but lost 77-96 % activity for the AXOS. The Y44A single mutant had less effect, suggesting Trp(23) is a key determinant. AnAbf62A-m2,3 seems to apply different polysaccharide-dependent binding modes, and Trp(23) and Tyr(44) belong to a putative surface binding site which is situated at a distance of the active site and has to be occupied to achieve full activity.This work is supported by the Danish Council for Independent Research|Natural Sciences (FNU) [grant number 09-072151], by 1/3 PhD fellowship from the Technical University of Denmark (to CW) and by a Hans Christian Ørsted postdoctoral fellowship from DTU (to DC).This is the author accepted manuscript. The final version is available from Springer via http://dx.doi.org/10.1007/s00253-016-7417-

    GLP−1 Promotes Cortical and Medullary Perfusion in the Human Kidney and Maintains Renal Oxygenation During NaCl Loading

    Get PDF
    BackgroundGLP‐1 (glucagon‐like peptide‐1) receptor agonists exert beneficial long‐term effects on cardiovascular and renal outcomes. In humans, the natriuretic effect of GLP‐1 depends on GLP‐1 receptor interaction, is accompanied by suppression of angiotensin II, and is independent of changes in renal plasma flow. In rodents, angiotensin II constricts vasa recta and lowers medullary perfusion. The current randomized, controlled, crossover study was designed to test the hypothesis that GLP‐1 increases renal medullary perfusion in healthy humans.Methods and ResultsHealthy male participants (n=10, aged 27±4 years) ingested a fixed sodium intake for 4 days and were examined twice during a 1‐hour infusion of either GLP‐1 (1.5 pmol/kg per minute) or placebo together with infusion of 0.9% NaCl (750 mL/h). Interleaved measurements of renal arterial blood flow, oxygenation (R2*), and perfusion were acquired in the renal cortex and medulla during infusions, using magnetic resonance imaging. GLP‐1 infusion increased medullary perfusion (32±7%, P<0.001) and cortical perfusion (13±4%, P<0.001) compared with placebo. Here, NaCl infusion decreased medullary perfusion (−5±2%, P=0.007), whereas cortical perfusion remained unchanged. R2* values increased by 3±2% (P=0.025) in the medulla and 4±1% (P=0.008) in the cortex during placebo, indicative of decreased oxygenation, but remained unchanged during GLP‐1. Blood flow in the renal artery was not altered significantly by either intervention.ConclusionsGLP‐1 increases predominantly medullary but also cortical perfusion in the healthy human kidney and maintains renal oxygenation during NaCl loading. In perspective, suppression of angiotensin II by GLP‐1 may account for the increase in regional perfusion

    Comparison of Short-Term Estrogenicity Tests for Identification of Hormone-Disrupting Chemicals

    Get PDF
    The aim of this study was to compare results obtained by eight different short-term assays of estrogenlike actions of chemicals conducted in 10 different laboratories in five countries. Twenty chemicals were selected to represent direct-acting estrogens, compounds with estrogenic metabolites, estrogenic antagonists, and a known cytotoxic agent. Also included in the test panel were 17β-estradiol as a positive control and ethanol as solvent control. The test compounds were coded before distribution. Test methods included direct binding to the estrogen receptor (ER), proliferation of MCF-7 cells, transient reporter gene expression in MCF-7 cells, reporter gene expression in yeast strains stably transfected with the human ER and an estrogen-responsive reporter gene, and vitellogenin production in juvenile rainbow trout. 17β-Estradiol, 17α-ethynyl estradiol, and diethylstilbestrol induced a strong estrogenic response in all test systems. Colchicine caused cytotoxicity only. Bisphenol A induced an estrogenic response in all assays. The results obtained for the remaining test compounds—tamoxifen, ICI 182.780, testosterone, bisphenol A dimethacrylate, 4-n-octylphenol, 4-n-nonylphenol, nonylphenol dodecylethoxylate, butylbenzylphthalate, dibutylphthalate, methoxychlor, o,p′-DDT, p,p′-DDE, endosulfan, chlomequat chloride, and ethanol—varied among the assays. The results demonstrate that careful standardization is necessary to obtain a reasonable degree of reproducibility. Also, similar methods vary in their sensitivity to estrogenic compounds. Thus, short-term tests are useful for screening purposes, but the methods must be further validated by additional interlaboratory and interassay comparisons to document the reliability of the methods

    The cellular and synaptic architecture of the mechanosensory dorsal horn

    Get PDF
    The deep dorsal horn is a poorly characterized spinal cord region implicated in processing low-threshold mechanoreceptor (LTMR) information. We report an array of mouse genetic tools for defining neuronal components and functions of the dorsal horn LTMR-recipient zone (LTMR-RZ), a role for LTMR-RZ processing in tactile perception, and the basic logic of LTMR-RZ organization. We found an unexpectedly high degree of neuronal diversity in the LTMR-RZ: seven excitatory and four inhibitory subtypes of interneurons exhibiting unique morphological, physiological, and synaptic properties. Remarkably, LTMRs form synapses on between four and 11 LTMR-RZ interneuron subtypes, while each LTMR-RZ interneuron subtype samples inputs from at least one to three LTMR classes, as well as spinal cord interneurons and corticospinal neurons. Thus, the LTMR-RZ is a somatosensory processing region endowed with a neuronal complexity that rivals the retina and functions to pattern the activity of ascending touch pathways that underlie tactile perception

    An exploratory randomised controlled trial of a premises-level intervention to reduce alcohol-related harm including violence in the United Kingdom

    Get PDF
    &lt;b&gt;Background&lt;/b&gt;&lt;p&gt;&lt;/p&gt; To assess the feasibility of a randomised controlled trial of a licensed premises intervention to reduce severe intoxication and disorder; to establish effect sizes and identify appropriate approaches to the development and maintenance of a rigorous research design and intervention implementation.&lt;p&gt;&lt;/p&gt; &lt;b&gt;Methods&lt;/b&gt;&lt;p&gt;&lt;/p&gt; An exploratory two-armed parallel randomised controlled trial with a nested process evaluation. An audit of risk factors and a tailored action plan for high risk premises, with three month follow up audit and feedback. Thirty-two premises that had experienced at least one assault in the year prior to the intervention were recruited, match paired and randomly allocated to control or intervention group. Police violence data and data from a street survey of study premises’ customers, including measures of breath alcohol concentration and surveyor rated customer intoxication, were used to assess effect sizes for a future definitive trial. A nested process evaluation explored implementation barriers and the fidelity of the intervention with key stakeholders and senior staff in intervention premises using semi-structured interviews.&lt;p&gt;&lt;/p&gt; &lt;b&gt;Results&lt;/b&gt;&lt;p&gt;&lt;/p&gt; The process evaluation indicated implementation barriers and low fidelity, with a reluctance to implement the intervention and to submit to a formal risk audit. Power calculations suggest the intervention effect on violence and subjective intoxication would be raised to significance with a study size of 517 premises.&lt;p&gt;&lt;/p&gt; &lt;b&gt;Conclusions&lt;/b&gt;&lt;p&gt;&lt;/p&gt; It is methodologically feasible to conduct randomised controlled trials where licensed premises are the unit of allocation. However, lack of enthusiasm in senior premises staff indicates the need for intervention enforcement, rather than voluntary agreements, and on-going strategies to promote sustainability

    A RT-qPCR system using a degenerate probe for specific identification and differentiation of SARS-CoV-2 Omicron (B.1.1.529) variants of concern

    Get PDF
    Fast surveillance strategies are needed to control the spread of new emerging SARS-CoV-2 variants and gain time for evaluation of their pathogenic potential. This was essential for the Omicron variant (B.1.1.529) that replaced the Delta variant (B.1.617.2) and is currently the dominant SARS-CoV-2 variant circulating worldwide. RT-qPCR strategies complement whole genome sequencing, especially in resource lean countries, but mutations in the targeting primer and probe sequences of new emerging variants can lead to a failure of the existing RT-qPCRs. Here, we introduced an RT-qPCR platform for detecting the Delta- and the Omicron variant simultaneously using a degenerate probe targeting the key ΔH69/V70 mutation in the spike protein. By inclusion of the L452R mutation into the RT-qPCR platform, we could detect not only the Delta and the Omicron variants, but also the Omicron sub-lineages BA.1, BA.2 and BA.4/BA.5. The RT-qPCR platform was validated in small- and large-scale. It can easily be incorporated for continued monitoring of Omicron sub-lineages, and offers a fast adaption strategy of existing RT-qPCRs to detect new emerging SARS-CoV-2 variants using degenerate probes.</p

    Comparison of vaccine-induced antibody neutralization against SARS-CoV-2 variants of concern following primary and booster doses of COVID-19 vaccines

    Get PDF
    The SARS-CoV-2 pandemic has, as of July 2022, infected more than 550 million people and caused over 6 million deaths across the world. COVID-19 vaccines were quickly developed to protect against severe disease, hospitalization and death. In the present study, we performed a direct comparative analysis of four COVID-19 vaccines: BNT162b2 (Pfizer/BioNTech), mRNA-1273 (Moderna), ChAdOx1 (Oxford/AstraZeneca) and Ad26.COV2.S (Johnson & Johnson/Janssen), following primary and booster vaccination. We focused on the vaccine-induced antibody-mediated immune response against multiple SARS-CoV-2 variants: wildtype, B.1.1.7 (Alpha), B.1.351 (Beta), B.1.617.2 (Delta) and B.1.1.529 (Omicron). The analysis included the quantification of total IgG levels against SARS-CoV-2 Spike, as well as the quantification of antibody neutralization titers. Furthermore, the study assessed the high-throughput ACE2 competition assay as a surrogate for the traditional pseudovirus neutralization assay. The results demonstrated marked differences in antibody-mediated immune responses. The lowest Spike-specific IgG levels and antibody neutralization titers were induced by one dose of the Ad26.COV2.S vaccine, intermediate levels by two doses of the BNT162b2 vaccine, and the highest levels by two doses of the mRNA-1273 vaccine or heterologous vaccination of one dose of the ChAdOx1 vaccine and a subsequent mRNA vaccine. The study also demonstrated that accumulation of SARS-CoV-2 Spike protein mutations was accompanied by a marked decline in antibody neutralization capacity, especially for B.1.1.529. Administration of a booster dose was shown to significantly increase Spike-specific IgG levels and antibody neutralization titers, erasing the differences between the vaccine-induced antibody-mediated immune response between the four vaccines. The findings of this study highlight the importance of booster vaccines and the potential inclusion of future heterologous vaccination strategies for broad protection against current and emerging SARS-CoV-2 variants
    corecore