357 research outputs found

    Probing electric and magnetic vacuum fluctuations with quantum dots

    Full text link
    The electromagnetic-vacuum-field fluctuations are intimately linked to the process of spontaneous emission of light. Atomic emitters cannot probe electric- and magnetic-field fluctuations simultaneously because electric and magnetic transitions correspond to different selection rules. In this paper we show that semiconductor quantum dots are fundamentally different and are capable of mediating electric-dipole, magnetic-dipole, and electric-quadrupole transitions on a single electronic resonance. As a consequence, quantum dots can probe electric and magnetic fields simultaneously and can thus be applied for sensing the electromagnetic environment of complex photonic nanostructures. Our study opens the prospect of interfacing quantum dots with optical metamaterials for tailoring the electric and magnetic light-matter interaction at the single-emitter level.Comment: 6 pages, 4 figure

    Influence of Spurious Waves on the Performance of Active Absorption Systems in Oblique Waves

    Get PDF
    Existing active absorption systems do not take into account the spurious waves caused by the segmentation of the wavemaker. Thus, the theoretical estimated performance curves for oblique waves are only valid for infinitely narrow segments. In the present paper, it is demonstrated that by ignoring the spurious waves, an unstable system might be designed for box-mode paddles (piecewise constant segmentation). For vertical hinged pistons (piecewise linear segmentation), the results are the opposite, as the stability of the system is improved at high frequencies when a finite paddle width is considered. It is also shown that finite discretization leads to a directional influence in the system, even for a pseudo-3D active absorption system. This effect is more pronounced for vertical hinged systems compared to box-mode paddles

    Active Absorption of Nonlinear Irregular Waves

    Get PDF

    Identification of miRNA targets with stable isotope labeling by amino acids in cell culture

    Get PDF
    miRNAs are small noncoding RNAs that regulate gene expression. We have used stable isotope labeling by amino acids in cell culture (SILAC) to investigate the effect of miRNA-1 on the HeLa cell proteome. Expression of 12 out of 504 investigated proteins was repressed by miRNA-1 transfection. This repressed set of genes significantly overlaps with miRNA-1 regulated genes that have been identified with DNA array technology and are predicted by computational methods. Moreover, we find that the 3′-untranslated region for the repressed set are enriched in miRNA-1 complementary sites. Our findings demonstrate that SILAC can be used for miRNA target identification and that one highly expressed miRNA can regulate the levels of many different proteins
    • …
    corecore