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MODELLING OF THE BLOOD COAGULATION CASCADE
IN AN IN VITRO FLOW SYSTEM

N. M. ANDERSEN(2,3), M. P. SØRENSEN(2), M. A. EFENDIEV(1), O. H. OLSEN(3),
AND S. H. INGWERSEN(4)

Abstract. We derive a mathematical model of a part of the blood
coagulation cascade set up in a perfusion experiment. Our purpose
is to simulate the influence of blood flow and diffusion on the blood
coagulation pathway. The resulting model consists of a system of par-
tial differential equations taking into account the spatial distribution of
the biochemical species. An important issue is inclusion of a dynamic
boundary condition describing adhesion of activated platelets on a colla-
gen coated top lid in the perfusion chamber. The validity of the model is
established through criteria on the reaction diffusion and flow equations,
which guarantee non negative concentrations at all times. The criteria
is applied to the model of the blood coagulation cascade.

1. Introduction

The development of a new medicament is a long term enterprise and a typ-
ical time span from the first ideas to a product on the market is of the order
10 years and the development costs can easily exceed one billion Euro. Sub-
stantial expenditures are on testing for effectiveness to cure and on testing
for adverse effects. Since the mid nineties drug development has increased
in costs by about a factor of two, and at the same time the number of new
products have been reduced by half. A further pressure on drug develop-
ment comes from governments seeking cheaper medical treatment in order
to avoid exploding health care expenses. The pharmaceutical companies are
seeking ways to make the drug development more predictable and financially
safe. We believe that mathematical modelling of biosystems can be used as
one of more scientific tools to advance the development of medicine. In
particular when it comes to structuring large data sets and understanding
the dynamics of biochemical reactions, cell and organ functioning and other
processes. Due to the complexity of bio systems this is far from an easy task
and progress is difficult.

In this article we shall illustrate the use of mathematical modelling in the
pharmaceutical industry by an example from the development of a blood
coagulation treatment with the coagulation factor VII [1, 2]. More specific
we derive a mathematical model for a blood coagulation cascade set up in a
perfusion experiment conducted at Novo Nordisk A/S. Cleaned blood with
thrombocytes are used and coagulation factors are added in a controlled

1



2N. M. ANDERSEN(2,3), M. P. SØRENSEN(2), M. A. EFENDIEV(1), O. H. OLSEN(3), AND S. H. INGWERSEN(4)

fashion. We investigate the influence of blood flow and diffusion on the
blood coagulation pathway by deriving a model consisting of a system of
partial differential equations taking into account the spatial distribution of
the bio chemical species. In the experiment activated blood platelets adhere
to a collagen coated top lid of the perfusion chamber. The amount of ad-
hered platelets can be measured and the production of platelets as function
of various parameters can be investigated experimentally. In the mathe-
matical model the adhesion is described by a dynamical boundary condition
for the activated platelets. The validity of the model is established by a
mathematical criteria, which states conditions on the reaction diffusion ad-
vection equations, guaranteeing non-negative concentrations at all times.
While some sufficient conditions for positive invariance of diffusion-reaction
equations are known in the literature, e.g. in [3], [4] and [5], we present here
a criterion that is also necessary. The criteria is applied to the model of the
blood coagulation cascade.

2. The blood coagulation cascade and the mathematical model

The blood coagulation cascade is an important bio chemical reaction path-
way for preventing leakage in the vascular system in cases of vein or artery
injuries. The zymogen with the name factor VII flows in the blood, while
its co-factor is buried in the blood vessel walls. In the event of an injury
the co-factor becomes exposed to factor VII and activates this zymogen to
the enzyme factor VIIa, which in turn starts the coagulation cascade. The
cascade involves a number of biochemical species, including blood platelets
and thrombin. Thrombin activates formation of fibrin, which polymerizes
into actin fibers, and the platelets turns sticky and seals off the leakage. The
formed clog of platelets is mechanically stabilized by the actin fibers [6].

Recombinant factor VIIa has proven to be an effective treatment of a
number of disorders in the blood coagulation cascade [1, 2] as it enhances
thrombin production at the site of an injury. In order to investigate the coag-
ulation cascade, perfusion experiments have been conducted [1, 7]. Washed
platelets and red cells were combined to obtain plasma-free blood. The
reconstituted blood was perfused over a collagen-coated surface in the pres-
ence of a thrombin generating system consisting of purified coagulation fac-
tors rFVIIa, Factor FX and prothrombin. Platelets adhere to the surface,
become activated, and expose procoagulant phospholipids. Subsequently,
rFVIIa binds to these phosphatidylserine-exposing platelets, on which it ac-
tivates FX independently of TF. The resulting FXa combines with Factor V
released from platelets α -granules, and the resulting prothrombinase com-
plex converts prothrombin to thrombin. Platelet adhesion was expressed as
the percentage of the surface covered with platelets [1].

In this way measurements of the amount of adhered platelets provides
information on the production of activated platelets and its dependence on
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various species or factors and parameters in the reaction pathway. Non-
activated thrombocytes is denoted by T. The activated platelets play an
important role in forming binding sites for the bio chemical reactions for
the formation of thrombin, factor IIa. Thrombin catalyzes transformation
from inactivated to activated platelets, thereby enhancing the activation of
platelets.

In the case where we incorporate blood flow and diffusion of say k bio-
chemical species, the mathematical models of the blood coagulation cascade
has the general form

(1)
∂ui

∂t
= f(u1, . . . , uk) +∇(Di∇ui)−∇(vui) .

Here k is the number of species and i=1, 2, . . . , k. The concentration of
species i we denote [i]=ui(r, t) and it depends on the spatial variables r =
(x, y, z) and time t. The function f describes the dynamics of the bio chem-
ical reactions and ∇ is the operator (∂x, ∂y, ∂z). The solution of the above
concentrations is sought in a given space Ω with boundary Γ=∂Ω. Unique
solutions ui are determined from specified boundary and initial conditions.
The function f determines the reaction dynamics, the blood flow velocity
is v=v(r, t) and Di is the diffusion constant matrix, which here is diagonal.
Anisotropic diffusion is modelled by using different values of the diagonal
constants. The presence of erythrocytes (red blood cells) in blood vessels
tend to push the much smaller platelets from the center to the vessel walls,
a phenomenon which can be taken into account by invoking anisotropic dif-
fusion. The same is observed in perfusion channels when erythrocytes is
present. A number of studies present various models of the blood coagula-
tion cascade or parts of the cascade [8, 9, 10, 11]. Furthermore, numerous
suggestions for simplified models comprising just a few coupled equations
are presented in the literature [12, 13, 14, 15].

We have developed a model for a perfusion experiment [1] consisting of 17
biochemical factors or species. These include thrombocytes T, Ta, factors
II (prothrombin) and IIa (thrombin), factors X and Xa, factors VII and
VIIa, factors V and Va, the tenase complex Xa-Va-Ta, where factor Xa and
Va is bound to the surface of an activated platelet Ta. Finally, we have
included binding sites on the platelets specific for the factors X, VII and II
[16]. Here we shall not present the entire system of coupled equations for
the coagulation cascade studied, but discuss one equation to illustrate how
the complete model is constructed. In the perfusion experiment thrombin
activates thrombocytes according to the reaction

(2) IIa + T k→ Ta + IIa .

In the above reaction scheme k denotes the reaction rate. For Ta the model
equation becomes [16]
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Figure 1. Sketch of the perfusion chamber.

∂[Ta]
∂t

= −k [T ]
[IIa]

c + [IIa]
+DTa∆[Ta]−∇(v[Ta]) .(3)

The variable [Ta] is the concentration of thrombocytes and ∆ is the Lapla-
cian. We have conducted simulations of the blood coagulation cascade as
it appears in a perfusion experiment. The perfusion chamber is shaped
as a rectangular box of length `, width w and hight h, and constructed
so that h ¿ w ¿ `. A coordinate system is inserted where the x-axis is
parallel to the box length (0 ≤ x ≤ `), the y-axis is parallel to the hight
edge (0 ≤ y ≤ h) and the z-axis is parallel to the width edge of the box
(−w/2 ≤ z ≤ w/2). The boundary conditions used are: influx, with uniform
concentration of the reacting species, at x = 0, outflow at x = ` and isola-
tion at all other surfaces with one exception. The top lid of the perfusion
chamber is coated by collagen and activated sticky platelets will adhere to
the collagen. In mathematical terms this leads to a dynamical boundary
condition where the concentration of the bounded platelets TaB becomes a
time and space dependent variable [TaB] which satisfy a differential equa-
tion defined on the boundary and coupled to the full system (1) defined in
Ω. In the experiment presented in reference [1] activated blood platelets Ta
attach to the collagen coated top lid Γ1 leading to the reaction

(4) Ta + θ
k1→ TaB ,

with k1 being the associated binding rate. Here θ is the concentration of
free binding sites on the lid. TaB is an activated platelet bounded to site
θ. The total number of binding sites θ0 is assumed conserved and hence
the concentrations of binding sites and activated bounded platelets obey
[θ]+ [TaB] = θ0. The boundary condition now becomes dynamic for Ta and
reads [9, 17]

(5)
∂[TaB]

∂t
= k1[Ta](θ0 − [TaB]) on Γ1 .

Note that in our perfusion system all other species than Ta satisfy insulating
boundary conditions on the top lid. The dynamic boundary condition in (5)
provides the concentration [TaB] from which we can calculate the total
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amount of adhered platelets, which in turn provides information on the
production of activated platelets.

3. Verifying models containing diffusion, transport and
interaction of species

For models of bio chemical reactions we must demand that the concen-
tration of species are non-negative at all times. In deriving a model like (1)
it is not beforehand guarantied that this property is satisfied, and numerical
simulations cannot answer the question if the model in this sense is valid
or not. Even though numerical simulations can provide empirical evidence
we can never be sure. In order to validate reaction diffusion convection
equations, we have proved the below theorem 1, which provides criteria for
the model guarantying non-negative concentrations for all times [18]. The
theorem is proved for a slightly generalized version of Eq. (1) in the form

(6)
∂u

∂t
= a∆u− γ ·Du + f(u) ,

with initial conditions u(r, 0) = u0(r), and the boundary conditions are
of Dirichlet type u(r, t) = 0 on Γ. The matrix a is (k × k) with constant
coefficients such that a+a∗ > 0 (a is positive definite), and f ∈ C1

(
Rk, Rk

)
.

Here γ·Du =
∑k

i=1 γi∂xiu, with γi a (k×k)-matrix with constant coefficients.
We assume that solutions u to (6) with initial data u(0, ·) = u0 exist under
appropriate compatibility conditions. We establish a criterion for positive
invariance of the positive cone K+ = {u1 > 0, . . . , uk > 0}, that is if u is a
solution originating from initial data u0 then

(7) u0 ∈ K+ =⇒ u(t) ∈ K+ .

We have proved the following theorem

Theorem 1: Let a, γi, i = 1, . . . , k, be (k × k)-matrices with constant
coefficients, such that a + a∗ > 0 and f ∈ C1

(
Rk, Rk

)
. Let u0 ∈ L2

(
Ω, Rk

)
and the compatibility conditions on the data of (6) hold. Then in order to
preserve the non-negative cone for (6) necessary and sufficient conditions
are that the matrices a and γi, i = 1, . . . , k are diagonal and

fi

(
u1, . . . , 0

i
, . . . , uk

)
> 0 ,

for u1 > 0, . . . ,uk > 0 .

The proof of the theorem 1 is not provided here but is presented in reference
[18]. We should remark that the result of the Theorem 1 can be extended
to the cases a) Robin boundary condition (both homogeneous and non ho-
mogeneous) and b) Dynamic boundary condition (both homogeneous and
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Figure 2. The concentration [Ta] of activated platelets Ta
in the perfusion chamber at time t = 10. Parameters: k = 1,
c = 1, θ0 = 1, k1 = 0.04. The diffusion matrix is DT =
[{D 0} : {0 100·D}] where D = 4.2703·10−5. Concentration
at inlet: [Ta] = 5. The Poiseuille flow velocity is v = acy(1−
y), where ac = 1.7297.

non homogeneous) with suitable assumptions on the boundary data (for ex-
ample, in the case u|Γ = g1(x′) we have to assume g1 ≥ 0 or in the case
∂u/∂n|Γ = g2(x′) accordingly g2 ≥ 0 e.t.c. By inspection of our full system
of equations for the perfusion experiment we observe that each component
of the vector f satisfies the condition in theorem 1. Hence the model is valid
with respect to providing non-negative concentrations at all times.

4. Simulations of the blood coagulation model

In order to illustrate the solution of the model of the blood coagulation
cascade in the perfusion experiment, we have implemented a scaled version
of the model in the finite element program Comsol [19]. The scaling is
chosen to provide variables and constants without units in the model equa-
tions. This is done by multiplying the concentration variables, the space
variables and the time by suitably chosen constants. We have conducted
simulations of a two dimensional slice of the perfusion chamber (xy-plane)
placed at the center of the chamber (z = 0). The blood flow through the
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Figure 3. The concentration of activated platelets in the
perfusion chamber at time t = 40. Parameters as in Fig. 1.

perfusion chamber is assumed to be a Poiseuille flow depending only on y
through the relation for the flow velocity v(y)=acy(1−y), where the param-
eter ac is a constant determining the flow volume. The simulation results
are presented in figures 2 and 3, showing the concentration [Ta](x, y, t) as
function of space at times t = 10 and t = 40. In accordance with theorem
1 we observe that the concentration of Ta is non-negative throughout the
solution space. The influence of the diffusion is relatively large and leads to
nearly uniform concentration down stream at times larger than about t = 50.

The dynamic boundary condition (5) influences the concentration of the
active platelets at the top boundary (y=h). Initially the platelet adhesion
decreases the concentration of platelets close to y = h, see Fig. 2. At later
times the free binding sites on the top lid are all filled and the concentration
of bound platelets TaB saturates. The saturation leads to no adhesion of
the platelets at the top boundary and eventually the boundary acts as an
insulating boundary for Ta, resulting in increased concentration of Ta close
to y = h, see Fig. 3.

In experiments the total amount of platelets sticking by adhesion to the
top lid is measured. The time evolution of the concentration of the bound
platelets TaB is presented in Fig. 4 showing that first platelets close to
the inlet at x = 0 binds to the surface of the top lid. Downstream less
platelets are available and the concentration of bound platelets are low.
Eventually, the bound platelets will fill in the empty sites downstream and
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Figure 4. The concentration [TaB] as function of x of acti-
vated platelets bounded to the top lid of the perfusion cham-
ber at y = 1 for the times indicated. Parameters as in Fig.
1.

the entire lid saturates. A more realistic model of the adhesion of platelets
at the boundary should allow for layers of platelets to build up and hence
the boundary becomes a moving boundary, a complexity we have chosen to
neglect here.

In summary we have developed a mathematical criteria for judging the va-
lidity of reaction diffusion convective type differential equation models. The
criteria guaranties non negative values of the concentrations of the species
for all times. We have used the criteria on a model of the blood coagulation
cascade as investigated in a perfusion experiment with a reduced number of
coagulation factors. The model is solved using a finite element code in order
to illustrate the use of the criteria and to illustrate the influence of diffu-
sion and convection on the coagulation cascade with a dynamic boundary
condition modelling adhesion of blood platelets to a collagen coated surface.
Models of the blood coagulation cascade, or other bio chemical reaction
pathways, we believe can guide experiments or serve as a tool where it is
possible to see processes otherwise not visible in experiments, that could be
concentrations in hidden places, or concentration gradients, etc. Together
with actual experimental results, model simulations can supplement the sci-
entific data collection for fruitful discussions and aid more reliable and fast
development of new medical treatments.
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