7 research outputs found

    A microcomputer- controlled thermostat

    Get PDF

    How effective are created or restored freshwater wetlands for nitrogen and phosphorus removal? A systematic review

    No full text
    Background: Eutrophication of aquatic environments is a major environmental problem in large parts of the world. In Europe, EU legislation (the Water Framework Directive and the Marine Strategy Framework Directive), international conventions (OSPAR, HELCOM) and national environmental objectives emphasize the need to reduce the input of nutrients to freshwater and marine environments. A widely used method to achieve this is to allow water to pass through a created or restored wetland. However, the large variation in measured nutrient removal rates in such wetlands calls for a systematic review. Methods: Searches for primary studies were performed in electronic databases and on the internet. One author performed the screening of all retrieved articles at the title and abstract level. To check that the screening was consistent and complied with the agreed inclusion/exclusion criteria, subsets of 100 articles were screened by the other authors. When screening at full-text level the articles were evenly distributed among the authors. Kappa tests were used to evaluate screening consistency. Relevant articles remaining after screening were critically appraised and assigned to three quality categories, from two of which data were extracted. Quantitative synthesis consists of meta-analyses and response surface analyses. Regressions were performed using generalized additive models that can handle nonlinear relationships and interaction effects. Results: Searches generated 5853 unique records. After screening on relevance and critical appraisal, 93 articles including 203 wetlands were used for data extraction. Most of the wetlands were situated in Europe and North America. The removal rate of both total nitrogen (TN) and total phosphorus (TP) is highly dependent on the loading rate. Significant relationships were also found for annual average air temperature (T) and wetland area (A). Median removal rates of TN and TP were 93 and 1.2 g m(-2) year(-1.), respectively. Removal efficiency for TN was significantly correlated with hydrologic loading rate (HLR) and T, and the median was 37 %, with a 95 % confidence interval of 29-44 %. Removal efficiency for TP was significantly correlated with inlet TP concentration, HLR, T, and A. Median TP removal efficiency was 46 % with a 95 % confidence interval of 37-55 %. Although there are small differences in average values between the two quality categories, the variation is considerably smaller among high quality studies compared to studies with lower quality. This suggests that part of the large variation between studies may be explained by less rigorous study designs. Conclusions: On average, created and restored wetlands significantly reduce the transport of TN and TP in treated wastewater and urban and agricultural runoff, and may thus be effective in efforts to counteract eutrophication. However, restored wetlands on former farmland were significantly less efficient than other wetlands at TP removal. In addition, wetlands with precipitation-driven HLRs and/or hydrologic pulsing show significantly lower TP removal efficiencies compared to wetlands with controlled HLRs. Loading rate (inlet concentrations x hydraulic loading rates) needs to be carefully estimated as part of the wetland design. More research is needed on the effects of hydrologic pulsing on wetlands. There is also a lack of evidence for long-term (&amp;gt;20 years) performance of wetlands.Funding Agencies|Mistra Council for Evidence-based Environmental Management (Mistra EviEM); Swedish Foundation for Strategic Environmental Research (Mistra)Swedish Foundation for Strategic Research</p

    Continuous Lipid Bilayers Derived from Cell Membranes for Spatial Molecular Manipulation

    No full text
    Progress with respect to enrichment and separation of native membrane components in complex lipid environments, such as native cell membranes, has so far been very limited. The reason for the slow progress can be related to the lack of efficient means to generate continuous and laterally fluid supported lipid bilayers (SLBs) made from real cell membranes. We show in this work how the edge of a hydrodynamically driven SLB can be used to induce rupture of adsorbed lipid vesicles of compositions that typically prevent spontaneous SLB formation, such as vesicles made of complex lipid compositions, containing high cholesterol content or being derived from real cell membranes. In particular, upon fusion between the moving edge of a preformed SLB and adsorbed vesicles made directly from 3T3 fibroblast cell membranes, the membrane content of the vesicles was shown to be efficiently transferred to the SLB. The molecular transfer was verified using cholera toxin B subunit (CTB) binding to monosialoganglioside receptors (G(M1) and G(M3)), and the preserved lateral mobility was confirmed by spatial manipulation of the G(M1/M3)-CTB complex using a hydrodynamic flow. Two populations of CTB with markedly different drift velocity could be identified, which from dissociation kinetics data were attributed to CTB bound with different numbers of ganglioside anchors
    corecore