2,584 research outputs found

    A Plasma Lens for Magnetron Sputtering

    Full text link

    Ion beam sputtering of silicon: Energy distributions of sputtered and scattered ions

    Get PDF
    The properties of sputtered and scattered ions are studied for ion beam sputtering of Si by bombardment with noble gas ions. The energy distributions in dependence on ion beam parameters (ion energy: 0.5-1 keV; ion species: Ne, Ar, Xe) and geometrical parameters (ion incidence angle, polar emission angle, and scattering angle) are measured by means of energy-selective mass spectrometry. The presence of anisotropic effects due to direct sputtering and scattering is discussed and correlated with process parameters. The experimental results are compared to calculations based on a simple elastic binary collision model and to simulations using the Monte-Carlo code sdtrimsp. The influence of the contribution of implanted primary ions on energy distributions of sputtered and scattered particles is studied in simulations. It is found that a 10% variation of the target composition leads to detectable but small differences in the energy distributions of scattered ions. Comparison with previously reported data for other ion/target configurations confirms the presence of similar trends and anisotropic effects: The number of high-energy sputtered ions increases with increasing energy of incident ions and decreasing scattering angle. The effect of the ion/target mass ratio is additionally investigated. Small differences are observed with the change of the primary ion species: The closer the mass ratio to unity, the higher the average energy of sputtered ions. The presence of peaks, assigned to different mechanisms of direct scattering, strongly depends on the ion/target mass ratio

    Element- and charge-state-resolved ion energies in the cathodic arc plasma from composite AlCr cathodes in argon, nitrogen and oxygen atmospheres

    Full text link
    The energy distribution functions of ions in the cathodic arc plasma using composite AlCr cathodes were measured as a function of the background gas pressure in the range 0.5 to 3.5 Pa for different cathode compositions and gas atmospheres. The most abundant aluminium ions were Al+^{+} regardless of the background gas species, whereas Cr2+^{2+} ions were dominating in Ar and N2_2 and Cr+^{+} in O2_2 atmospheres. The energy distributions of the aluminium and chromium ions typically consisted of a high-energy fraction due to acceleration in the expanding plasma plume from the cathode spot and thermalised ions that were subjected to collisions in the plasma cloud. The fraction of the latter increased with increasing background gas pressure. Atomic nitrogen and oxygen ions showed similar energy distributions as the aluminium and chromium ions, whereas the argon and molecular nitrogen and oxygen ions were formed at greater distance from the cathode spot and thus less subject to accelerating gradients. In addition to the positively charged metal and gas ions, negatively charged oxygen and oxygen-containing ions were observed in O2_2 atmosphere. The obtained results are intended to provide a comprehensive overview of the ion energies and charge states in the arc plasma of AlCr composite cathodes in different gas atmospheres as such plasmas are frequently used to deposit thin films and coatings.Comment: 16 pages, 11 figures - title changed - typos corrected - discussion extended, results unchange
    • …
    corecore