13,158 research outputs found

    Dynamics of large anisotropic spin in a sub-ohmic dissipative environment close to a quantum-phase transition

    Full text link
    We investigate the dynamics of a large anisotropic spin whose easy-axis component is coupled to a bosonic bath with a spectral function J(\w)\propto \omega^s. Such a spin complex might be realized in a single-molecular magnet. Using the non-perturbative renormalization group, we calculate the line of quantum-phase transitions in the sub-ohmic regime (s<1s<1). These quantum-phase transitions only occur for integer spin JJ. For half-integer JJ, the low temperature fixed-point is identical to the fixed-point of the spin-boson model without quantum-tunneling between the two levels. Short-time coherent oscillations in the spin decay prevail even into the localized phase in the sub-ohmic regime. The influence of the reorganization energy and the recurrence time on the decoherence in the absence of quantum-tunneling is discussed.Comment: 14 pages,7 figure

    Canonical density matrix perturbation theory

    Full text link
    Density matrix perturbation theory [Niklasson and Challacombe, Phys. Rev. Lett. 92, 193001 (2004)] is generalized to canonical (NVT) free energy ensembles in tight-binding, Hartree-Fock or Kohn-Sham density functional theory. The canonical density matrix perturbation theory can be used to calculate temperature dependent response properties from the coupled perturbed self-consistent field equations as in density functional perturbation theory. The method is well suited to take advantage of sparse matrix algebra to achieve linear scaling complexity in the computational cost as a function of system size for sufficiently large non-metallic materials and metals at high temperatures.Comment: 21 pages, 3 figure

    Fast simulation of stabilizer circuits using a graph state representation

    Full text link
    According to the Gottesman-Knill theorem, a class of quantum circuits, namely the so-called stabilizer circuits, can be simulated efficiently on a classical computer. We introduce a new algorithm for this task, which is based on the graph-state formalism. It shows significant improvement in comparison to an existing algorithm, given by Gottesman and Aaronson, in terms of speed and of the number of qubits the simulator can handle. We also present an implementation.Comment: v2: significantly improved presentation; accepted by PR
    • …
    corecore