363 research outputs found

    Macroscopic electrostatic potentials and interactions in self-assembled molecular bilayers: the case of Newton black films

    Full text link
    We propose a very simple but 'realistic' model of amphiphilic bilayers,simple enough to be able to include a large number of molecules in the sample, but nevertheless detailed enough to include molecular charge distributions, flexible amphiphilic molecules and a reliable model of water. All these parameters are essential in a nanoscopic scale study of intermolecular and long range electrostatic interactions. We also propose a novel, simple and more accurate macroscopic electrostatic field for model bilayers. This model goes beyond the total dipole moment of the sample, which on a time average is zero for this type of symmetrical samples, i. e., it includes higher order moments of this macroscopic electric field. We show that by representing it with a superposition of gaussians it can be 'analytically' integrated, and therefore its calculation is easily implemented in a MD simulation (even in simulations of non-symmetrical bi- or multi-layers). In this paper we test our model by molecular dynamics simulations of Newton black films

    Adsorption of polymers on a fluctuating surface

    Full text link
    We study the adsorption of polymer chains on a fluctuating surface. Physical examples are provided by polymer adsorption at the rough interface between two non-miscible liquids, or on a membrane. In a mean-field approach, we find that the self--avoiding chains undergo an adsorption transition, accompanied by a stiffening of the fluctuating surface. In particular, adsorption of polymers on a membrane induces a surface tension and leads to a strong suppression of roughness.Comment: REVTEX, 9 pages, no figure

    Correlated disordered interactions on Potts models

    Full text link
    Using a weak-disorder scheme and real-space renormalization-group techniques, we obtain analytical results for the critical behavior of various q-state Potts models with correlated disordered exchange interactions along d1 of d spatial dimensions on hierarchical (Migdal-Kadanoff) lattices. Our results indicate qualitative differences between the cases d-d1=1 (for which we find nonphysical random fixed points, suggesting the existence of nonperturbative fixed distributions) and d-d1>1 (for which we do find acceptable perturbartive random fixed points), in agreement with previous numerical calculations by Andelman and Aharony. We also rederive a criterion for relevance of correlated disorder, which generalizes the usual Harris criterion.Comment: 8 pages, 4 figures, to be published in Physical Review

    Fluctuations of a driven membrane in an electrolyte

    Full text link
    We develop a model for a driven cell- or artificial membrane in an electrolyte. The system is kept far from equilibrium by the application of a DC electric field or by concentration gradients, which causes ions to flow through specific ion-conducting units (representing pumps, channels or natural pores). We consider the case of planar geometry and Debye-H\"{u}ckel regime, and obtain the membrane equation of motion within Stokes hydrodynamics. At steady state, the applied field causes an accumulation of charges close to the membrane, which, similarly to the equilibrium case, can be described with renormalized membrane tension and bending modulus. However, as opposed to the equilibrium situation, we find new terms in the membrane equation of motion, which arise specifically in the out-of-equilibrium case. We show that these terms lead in certain conditions to instabilities.Comment: 7 pages, 2 figures. submitted to Europhys. Let

    Topography and instability of monolayers near domain boundaries

    Full text link
    We theoretically study the topography of a biphasic surfactant monolayer in the vicinity of domain boundaries. The differing elastic properties of the two phases generally lead to a nonflat topography of ``mesas'', where domains of one phase are elevated with respect to the other phase. The mesas are steep but low, having heights of up to 10 nm. As the monolayer is laterally compressed, the mesas develop overhangs and eventually become unstable at a surface tension of about K(dc)^2 (dc being the difference in spontaneous curvature and K a bending modulus). In addition, the boundary is found to undergo a topography-induced rippling instability upon compression, if its line tension is smaller than about K(dc). The effect of diffuse boundaries on these features and the topographic behavior near a critical point are also examined. We discuss the relevance of our findings to several experimental observations related to surfactant monolayers: (i) small topographic features recently found near domain boundaries; (ii) folding behavior observed in mixed phospholipid monolayers and model lung surfactants; (iii) roughening of domain boundaries seen under lateral compression; (iv) the absence of biphasic structures in tensionless surfactant films.Comment: 17 pages, 9 figures, using RevTeX and epsf, submitted to Phys Rev

    Liquid friction on charged surfaces: from hydrodynamic slippage to electrokinetics

    Full text link
    Hydrodynamic behavior at the vicinity of a confining wall is closely related to the friction properties of the liquid/solid interface. Here we consider, using Molecular Dynamics simulations, the electric contribution to friction for charged surfaces, and the induced modification of the hydrodynamic boundary condition at the confining boundary. The consequences of liquid slippage for electrokinetic phenomena, through the coupling between hydrodynamics and electrostatics within the electric double layer, are explored. Strong amplification of electro-osmotic effects is revealed, and the non-trivial effect of surface charge is discussed. This work allows to reconsider existing experimental data, concerning Zeta potentials of hydrophobic surfaces and suggest the possibility to generate ``giant'' electro-osmotic and electrophoretic effects, with direct applications in microfluidics

    Ecological criteria for evaluation candidate sites for marine reserves

    Get PDF
    Several schemes have been developed to help select the locations of marine reserves. All of them combine social, economic, and biological criteria, and few offer any guidance as to how to prioritize among the criteria identified. This can imply that the relative weights given to different criteria are unimportant. Where two sites are of equal value ecologically, then socioeconomic criteria should dominate the choice of which should be protected. However, in many cases, socioeconomic criteria are given equal or greater weight than ecological considerations in the choice of sites. This can lead to selection of reserves with little biological value that fail to meet many of the desired objectives. To avoid such a possibility, we develop a series of criteria that allow preliminary evaluation of candidate sites according to their relative biological values in advance of the application of socioeconomic criteria. We include criteria that, while not strictly biological, have a strong influence on the species present or ecological processes. Our scheme enables sites to be assessed according to their biodiversity, the processes which underpin that diversity, and the processes that support fisheries and provide a spectrum of other services important to people. Criteria that capture biodiversity values include biogeographic representation, habitat representation and heterogeneity, and presence of species or populations of special interest (e.g., threatened species). Criteria that capture sustainability of biodiversity and fishery values include the size of reserves necessary to protect viable habitats, presence of exploitable species, vulnerable life stages, connectivity among reserves, links among ecosystems, and provision of ecosystem services to people. Criteria measuring human and natural threats enable candidate sites to be eliminated from consideration if risks are too great, but also help prioritize among sites where threats can be mitigated by protection. While our criteria can be applied to the design of reserve networks, they also enable choice of single reserves to be made in the context of the attributes of existing protected areas. The overall goal of our scheme is to promote the development of reserve networks that will maintain biodiversity and ecosystem functioning at large scales. The values of ecosystem goods and services for people ultimately depend on meeting this objective
    corecore