34 research outputs found

    THE PERFORMANCE OF BDS RELATIVE POSITIONING USAGE WITH REAL OBSERVATION DATA

    Get PDF
    With the first phase of COMPASS/BeiDou-2 (BDS) completed, the assessment ofpositioning performance and the characterization of its system are analyzed andpresented. Pseudo-range and carrier phase measurements modulated on B1 and B2have been collected in Shanghai, from 00:00 to 24:00 on 28 December, 2012.Compared with GPS, visibility and measurement quality of BDS’s GEO, IGSO andMEO satellites are analyzed. DOP during the whole orbital period is also analyzedthe results demonstrate that BDS’s HDOP is better than GPS’s one, but VDOPopposite. Furthermore, the result of positioning is also presented and analyzed.Short baselines are estimated by standalone BDS and GPS’s carrier phasemeasurement, respectively, using 48 segmentations of observations during a wholeday (24 hours, each segmentation, is about 30 minutes observation). The analysis ofstatic relative positioning demonstrates that BDS could achieve to millimeter level,corresponding to GPS. Kinematic result is produced by double differenced carrierphase observations with the ambiguities fixed under the constraint of precise shortbaseline.The result shows that the centimeter accuracy could be achieved. Whencomparing the results of kinematic baseline solutions, performance of BDS is worsethan GPS on North and Up components, but oppositely on the component of East inthe kinematic baseline processing

    MONITORING MASS CHANGES IN THE VOLTA RIVER BASIN USING GRACE SATELLITE GRAVITY AND TRMM PRECIPITATION

    Get PDF
    GRACE satellite gravity data was used to estimate mass changes within the Volta River basin in West African for the period of January, 2005 to December, 2010. We also used the precipitation data from the Tropical Rainfall Measurement Mission (TRMM) to determine relative contributions source to the seasonal hydrological balance within the Volta River basin. We found out that the seasonal mass change tends to be detected by GRACE for periods from 1 month in the south to 4 months in the north of the basin after the rainfall events. The results suggested a significant gain in water storage in the basin at reference epoch 2007.5 and a dominant annualcycle for the period under consideration for both in the mass changes and rainfall time series. However, there was a low correlation between mass changes and rainfall implying that there must be other processes which cause mass changeswithout rainfall in the upstream of the Volta River basin

    Role of Geoinformatics for Ghana oil and gas industry

    Get PDF
    The Geoinformatics Engineer (GE), who uses mathematical theory and precise measurements for the collection and distribution of geospatial data, plays a significant role in the oil and gas industry. The paper reviews the role the HE would play in t he recent oil and gas discovery in Ghana. This is because the GE is required in the planning and execution of nearly every form of activities at the upstream, midstream and downstream; for example offshore and onshore construction, exploration and engineering for the production and dissemination of oil and gas. Ghana is at the initial stages in the commercial production of oil and gas; and thus needs research institutions with excellent practical and research skills, such as the Department of Geomat ic Engineering (DGE), Kwame Nkrumah University of Science and Technology (KNUST), Ghana and School of Earth Sciences and Engineering (SESE), Hohai University, China, in employing Geoinformatics theories, applications and principles for geospatial decision making for sustainable production of oil and gas for Ghana and the Sub - Saharan Africa. SESE expertise in 3S Technology would greatly assist in the construction and monitoring of oil and gas infrastructures at the upstream, midstream and downstr eam. The pap er recommends useful suggestions for smooth management of the oil and gas industry focusing on GEs and research institutions

    The performance of bds relative positioning usage with real observation data

    No full text
    With the first phase of COMPASS/BeiDou-2 (BDS) completed, the assessment of positioning performance and the characterization of its system are analyzed and presented. Pseudo-range and carrier phase measurements modulated on B1 and B2 have been collected in Shanghai, from 00:00 to 24:00 on 28 December, 2012. Compared with GPS, visibility and measurement quality of BDS's GEO, IGSO and MEO satellites are analyzed. DOP during the whole orbital period is also analyzed the results demonstrate that BDS's HDOP is better than GPS's one, but VDOP opposite. Furthermore, the result of positioning is also presented and analyzed. Short baselines are estimated by standalone BDS and GPS's carrier phase measurement, respectively, using 48 segmentations of observations during a whole day (24 hours, each segmentation, is about 30 minutes observation). The analysis of static relative positioning demonstrates that BDS could achieve to millimeter level, corresponding to GPS. Kinematic result is produced by double differenced carrier phase observations with the ambiguities fixed under the constraint of precise short baseline.The result shows that the centimeter accuracy could be achieved. When comparing the results of kinematic baseline solutions, performance of BDS is worse than GPS on North and Up components, but oppositely on the component of East in the kinematic baseline processing

    Monitoring mass changes in the Volta River basin using GRACE satellite gravity and TRMM precipitation

    No full text
    GRACE satellite gravity data was used to estimate mass changes within the Volta River basin in West African for the period of January, 2005 to December, 2010. We also used the precipitation data from the Tropical Rainfall Measurement Mission (TRMM) to determine relative contributions source to the seasonal hydrological balance within the Volta River basin. We found out that the seasonal mass change tends to be detected by GRACE for periods from 1 month in the south to 4 months in the north of the basin after the rainfall events. The results suggested a significant gain in water storage in the basin at reference epoch 2007.5 and a dominant annual cycle for the period under consideration for both in the mass changes and rainfall time series. However, there was a low correlation between mass changes and rainfall implying that there must be other processes which cause mass changes without rainfall in the upstream of the Volta River basin

    Monitoring mass changes in the Volta River basin using GRACE satellite gravity and TRMM precipitation

    Get PDF
    GRACE satellite gravity data was used to estimate mass changes within the Volta River basin in West African for the period of January, 2005 to December, 2010. We also used the precipitation data from the Tropical Rainfall Measurement Mission (TRMM) to determine relative contributions source to the seasonal hydrological balance within the Volta River basin. We found out that the seasonal mass change tends to be detected by GRACE for periods from 1 month in the south to 4 months in the north of the basin after the rainfall events. The results suggested a significant gain in water storage in the basin at reference epoch 2007.5 and a dominant annual cycle for the period under consideration for both in the mass changes and rainfall time series. However, there was a low correlation between mass changes and rainfall implying that there must be other processes which cause mass changes without rainfall in the upstream of the Volta River basin

    Rainfall Variability in the Huangfuchuang Watershed and Its Relationship with ENSO

    No full text
    The impact of the El Niño-Southern Oscillation (ENSO) phenomenon within the Huangfuchuan watershed, one of the major first-order sub-basins in the middle region of the Yellow River, has not clearly been established. Consequently, the co-varying relationships between rainfall and El Niño/La Niña spanning the period 1954 to 2010 are investigated. Trends and step changes in annual rainfall are investigated with the Mann-Kendall and the distribution free cumulative sum (CUSUM) tests. Wavelet transforms are employed to perform spectral analysis of temporal variations in rainfall rates within the watershed. Cross wavelet and wavelet coherence transforms are used to study localized co-varying relationships between rainfall and ENSO index. Results from statistical tests indicate that rainfall in the Huangfuchuan watershed is declining, although not significantly. In addition, wavelet coherency and cross wavelet analysis, and comparison of the extracted dominant annual rainfall and 2–7 year ENSO signals demonstrate that ENSO events impact Huangfuchuan rainfall with El Niño corresponding to rainfall decline and La Niña to rainfall increment with a semiannual to annual lag

    Water Availability of São Francisco River Basin Based on a Space-Borne Geodetic Sensor

    No full text
    Brazil has recently experienced one of its worst droughts in the last 80 years, with wide-ranging consequences for water supply restrictions, energy rationing, and agricultural losses. Northeast and Southeast Brazil, which share the São Francisco River basin (SFRB), have experienced serious precipitation reduction since 2011. We used terrestrial water-storage (TWS) fields, inverted from the Gravity Recovery and Climate Experiment (GRACE) mission measurements, to assess and quantify the ongoing drought over the SFRB. We found a water loss rate of 3.30 km3/year over the time-span of April 2002 to March 2015. In addition, the TWS drought index (TWSDI) showed the extension of the recent drought that has jeopardized the SFRB since January 2012, and which reached its maximum in July 2015 (the end of TWS time series). In this sense there seems to be a linkage between the TWSDI (wetness/dryness) and the El Niño Southern Oscillation (ENSO), in terms of the wavelet coherence, at the semi-annual and biennial bands, suggesting a relationship between the two. While acknowledging that further investigation is needed, we believe that our findings should contribute to the water management policies by quantifying the impact of this drought event over the SFRB

    Multi-model and multi-sensor estimations of evapotranspiration over the Volta Basin, West Africa

    Get PDF
    The estimation of large-scale evapotranspiration (ET) is complex, and typically relies on the outputs of land surface models (LSMs) or remote sensing observations. However, over some regions of Africa, inconsistencies exist between different estimations of ET fluxes, which should be investigated. In this study, we evaluate and combine different ET estimates from moderate-resolution imaging spectroradiometer (MODIS), Global Land Data Assimilation System (GLDAS) and terrestrial water budget (TWB) approaches over the Volta Basin, West Africa. ET estimates from water balance equation are obtained as residuals from monthly terrestrial water-storage (TWS) changes derived from Gravity Recovery and Climate Experiment (GRACE), Tropical Rainfall Measurement Mission (TRMM)'s rainfall data, and in situ discharge from Akosombo Dam (Ghana). An averaged estimation of ET time series is derived from all the ET estimations under study, while taking into account their uncertainties. The resulting ensemble-averaged ET was then used to assess each of the individual ET estimates. Overall, out of the seven investigated ET estimates (two from the water balance approach of which one considers water storage using GRACE-derived TWS and the other ignoring it, four from GLDAS and one from MODIS), only MODIS (28.12 mm month–1), GLDAS–NOAH (32.74 mm month–1) and TWB (32.84 mm month–1) were found to represent the range of variability close to the computed averaged reference ET (30.25 mm month–1). ET estimations inferred from MODIS were also found to represent relatively lower magnitude of uncertainties, that is, 3.99 mm month–1 over the Volta Basin (cf. 7.06 and 18.85 mm month–1 for GLDAS-NOAH and TWB-based ET estimations, respectively)
    corecore