6 research outputs found

    Inhibiteurs des récepteurs plaquettaires P2Y12 à l'ADP: importance du métabolisme et influence des interactions médicamenteuses sur leurs paramètres pharmacocinétiques

    No full text
    Une des grandes classes de médicaments antiplaquettaires utilisés dans les maladies cardiovasculaires est la famille des thiénopyridines. Une revue de la littérature approfondie a tout d'abord été réalisée sur la pharmacologie et la variabilité de réponse interindividuelle de ces médicaments. La deuxième partie montre les études in vitro qui ont été effectuées pour caractériser le métabolisme de ces agents antiplaquettaires. Les interactions médicamenteuses entre les thiénopyridines et les antirétroviraux comme le ritonavir ont ensuite été étudiées in vitro puis in vivo avec la réalisation d'une étude clinique sur des volontaires sains. Les résultats de ces études ont confirmé une interaction pharmacocinétique entre le ritonavir et le prasugrel liée à l'inactivation du CYP3A par le ritonavir, provoquant une diminution de la production de métabolite actif du prasugrel. Dans une dernière partie, le potentiel inducteur/inhibiteur du CYP3A4 par les anti-VIH a été investigué à l'aide d'une nouvelle lignée cellulaire hépatique

    Ritonavir inhibits the two main prasugrel bioactivation pathways in vitro: a potential drug-drug interaction in HIV patients

    No full text
    Prasugrel is an antiplatelet prodrug used in patients with acute coronary syndrome. Prasugrel is mainly bioactivated by cytochromes P450 3A4/5 and CYP2B6. HIV patients are at risk of cardiovascular disease, and the protease inhibitor ritonavir is a potent inhibitor of these 2 CYPs. The aim of this in vitro study was to determine the impact of ritonavir in prasugrel metabolism. Human liver microsomes (HLMs) and recombinant microsomes were used to identify the enzymes responsible for the bioactivation of prasugrel. Prasugrel concentrations of 5 to 200 μM were used for Km determination. Inhibition by ritonavir was characterized using HLMs at concentrations of 0.1 to 30 μM. Prasugrel active metabolite determination was performed with a validated liquid chromatography-mass spectrometry method. Using recombinant microsomes, prasugrel biotransformation was mainly performed by CYP2B6, CYP2D6, CYP2C19, CYP3A4, and CYP3A5. With specific inhibitors of CYP3A, CYP2B6, CYP2D6, CYP2C9, and CYP2C19, active metabolite production was decreased by 38% ± 15% with 4-(4-chlorobenzyl)pyridine (CYP2B6 inhibitor) and by 45 ± 16% with ketoconazole (CYP3A inhibitor). The Km value for prasugrel metabolism in HLMs was determined to be 92.5 μM. Ritonavir at 0.1 to 30 μM was shown to be a potent dose-dependent inhibitor of prasugrel. In this in-vitro study, we found a potent inhibition of prasugrel bioactivation by ritonavir compared to the specific inhibitors of CYP3A and CYP2B6 due to the simultaneous inhibition of CYP2B6 and CYP3A by ritonavir. This finding suggests a potential significant drug-drug interaction between these two drugs

    Impact of genetic polymorphisms and drug-drug interactions on clopidogrel and prasugrel response variability

    No full text
    Thienopyridine antiaggregating platelet agents (clopidogrel and prasugrel) act as irreversible P2Y12 receptor inhibitors. They are used with aspirin to prevent thrombotic complications after an acute coronary syndrome or percutaneous coronary intervention. A large interindividual variability in response to clopidogrel and to a lesser extent to prasugrel is observed and may be related to their metabolism. Clopidogrel and prasugrel are indeed prodrugs converted into their respective active metabolites by several cytochromes P450 (CYPs). Besides clopidogrel inactivation (85%) by esterases to the carboxylic acid, clopidogrel is metabolized by CYPs to 2-oxo-clopidogrel (15%) and further metabolized to an unstable but potent platelet-aggregating inhibitor. Prasugrel is more potent than clopidogrel with a better bioavailability and lower pharmacodynamic variability. Prasugrel is completely converted by esterases to an intermediate oxo-metabolite (R-95913) further bioactivated by CYPs. Numerous clinical studies have shown the influence of CYP2C19 polymorphism on clopidogrel antiplatelet activity. Moreover, unwanted drug-drug pharmacokinetic interactions influencing CYP2C19 activity and clopidogrel bioactivation such as with proton pump inhibitors remain a matter of intense controversy. Several studies have also demonstrated that CYP3A4/5 and CYP1A2 are important in clopidogrel bioactivation and should also be considered as potential targets for unwanted drug-drug interactions. Prasugrel bioactivation is mainly related to CYP3A4 and 2B6 activity and therefore the question of the effect of drug-drug interaction on its activity is open. The purpose of this review is to critically examine the current literature evaluating the influence of genetic and environmental factors such as unwanted drug-drug interaction affecting clopidogrel and prasugrel antiplatelet activity

    The paraoxonase-1 pathway is not a major bioactivation pathway of clopidogrel in vitro

    No full text
    Clopidogrel is a prodrug bioactivated by cytochrome P450s (CYPs). More recently, paraoxonase-1 (PON1) has been proposed as a major contributor to clopidogrel metabolism. The purpose of this study was to assess the relative contribution of CYPs and PON1 to clopidogrel metabolism in vitro

    Impact of Boosted Antiretroviral Therapy on the Pharmacokinetics and Efficacy of Clopidogrel and Prasugrel Active Metabolites

    No full text
    Prasugrel and clopidogrel are inhibitors of the ADP-P2Y12 platelet receptor used in acute coronary syndrome patients. They require bioactivation via isoenzymes such as cytochrome P450 (CYP) 3A4, CYP2C19 and CYP2B6. Ritonavir and cobicistat are potent CYP3A inhibitors, prescribed as pharmacokinetic (PK) enhancers in the treatment of human immunodeficiency virus (HIV) infection
    corecore