25 research outputs found

    Anticorrosion coated stainless steel as durable support for C-N-TiO2 photo catalyst layer

    Get PDF
    The development of durable photocatalytic supports resistant in harsh environment has become challenging in advanced oxidation processes (AOPs) focusing on water and wastewater remediation. In this study, stainless steel (SS), SS/Ti (N,O) and SS/Cr-N/Cr (N,O) anticorrosion layers on SS meshes were dip-coated with sol gel synthesised C-N-TiO2 photo catalysts pyrolysed at 350◦C for 105 min, using a heating rate of 50◦C/min under N2 gas. The supported C-N-TiO2 films were characterized by scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (EDS), X-ray diffraction (XRD) and Raman spectroscopy. The results showed that C-N-TiO2 was successfully deposited on anticorrosion coated SS supports and had different morphologies. The amorphous C and TiO2 were predominant in C-N-TiO2 over anatase and rutile phases on the surface of Scandent corrosion supports. TheC-N-TiO2 coated films showed enhanced photocatalytic activity for the discoloration of O.II dye under both solar and UV radiations. The fabricated C-N-TiO2 films showed significant antibacterial activities in the dark as well as in visible light. Herein, we demonstrate that SS/Ti(N,O) and SS/Cr-N/Cr(N,O) anticorrosion coatings are adequate photocatalytic and corrosion resistant supports. The C-N-TiO2 photo catalytic coatings can be used for water and wastewater decontamination of pollutants and microbes

    Block Copolymer Elastomer with Graphite Filler: Effect of Processing Conditions and Silane Coupling Agent on the Composite Properties

    Get PDF
    The control of morphology and interface in poly(styrene-ethylene/butylene-styrene) (SEBS) composites with graphitic fillers is extremely important for the design of piezoresistive sensors for body motion or flexible temperature sensors. The effects of a high amount of graphite (G) and silane coupling agent on the morphology and properties of SEBS composites with anisotropic mechanical properties are reported. The physical and chemical bonding of silane to both G and SEBS surface was proved by EDX and TGA results; this improved interface influenced both the thermal and mechanical properties of the composite. The vinyltriethoxysilane (VS) promoted the formation of char residue and, being tightly bound to both SEBS and G, did not show separate decomposition peak in the TGA curve of composites. The mechanical properties were measured on two perpendicular directions and were improved by both the addition of VS and the increased amount of G; however, the increase of storage modulus due to orientation (from 5 to 15 times depending on the composition and direction of the test) was more important than that provided by the increase of G concentration, which was a maximum of four times that obtained for 15 wt % graphite. A mechanism to explain the influence of G content and treatment on the variation of storage modulus and tan δ depending on the direction of the test was also proposed

    Corrosion improvement of 304l stainless steel by zrsin and zrsi(N,o) mono-and double-layers prepared by reactive cathodic arc evaporation

    Get PDF
    Zr-based nitrides and oxynitrides were deposited by reactive cathodic arc evaporation in monolayer and double-layer structures with the aim of increasing the corrosion protection of 304L stainless steel (SS) in a biomedical aggressive environment. All coatings had a total thickness of 1.2 m. Compared to the bare substrate, the surface roughness of the coated samples was higher, the presence of microdroplets being revealed by scanning electron micrography (SEM). The X-ray diffraction investigation of the ZrN phases revealed that the peaks shifted towards lower Bragg angles and the lattice constants increased as a result of Si and O2 inclusion in ZrN lattice, and of the ion bombardment characteristic of the cathodic arc method, augmented by the applied bias substrate. SS/ZrSiN/ZrSi(N,O) showed the best corrosion performance in an acidic environment (0.9% NaCl and 6% H2O2; pH = 4), which was ascribed to the blocking effect of the interfaces, which acted as a corrosion barrier for the electrolyte ingress. Moreover, the aforementioned bilayer had the highest amount of Si and O in the composition of the top layer, forming a stable passive layer with beneficial effects on corrosion protection

    Effect of calcination time on the physicochemical properties and photocatalytic performance of carbon and nitrogen co-doped TiO2 nanoparticles

    Get PDF
    The application of highly active nano catalysts in advanced oxidation processes (AOPs) improves the production of non-selective hydroxyl radicals and co-oxidants for complete remediation of polluted water. This study focused on the synthesis and characterisation of a highly active visible light C–N-co-doped TiO2 nano catalyst that we prepared via the sol-gel method and pyrolysed at 350 ◦C for 105 min in an inert atmosphere to prevent combustion of carbon moietie

    Effect of deep cryogenic treatment on corrosion behavior of AISI H13 die steel

    No full text
    AISI H13 die steel specimens were subjected to heating at 1020 °C followed by oil quenching and double tempering at 520 °C. Subsequently, these specimens were subjected to deep cryogenic treatment at −185 °C in liquid nitrogen environment for 16 h and then subjected to soft tempering at 100 °C once the specimens attained room temperature. Thereafter, the specimens were subjected to scanning electron microscopy (SEM) analysis and electron backscatter diffraction (EBSD) analysis. The electrochemical corrosion activity was investigated in 3.5% NaCl at 23 ± 0.5 °C by evaluating the evolution of open circuit potential over time and potentiodynamic curves, and electrochemical impedance spectroscopy study was also carried out. The heat-treated specimens exhibited better resistance to corrosion through more electropositive values of open circuit potential. This could be attributed to lower grain boundary area in heat-treated specimens as compared to 16 h cryogenically treated specimen as higher grain boundary areas behave as an anode in an electrochemical cell, thereby enhancing the rate of corrosion. According to electrochemical tests, the cryogenically treated surface is more resistant to corrosion, followed by heated alloy. However, both surface modification treatments improved the corrosion behavior of the untreated alloy

    Effect of Doping Element and Electrolyte’s pH on the Properties of Hydroxyapatite Coatings Obtained by Pulsed Galvanostatic Technique

    No full text
    Hydroxyapatite (HAp) is the most widely used calcium phosphate as a coating on metal implants due to its biocompatibility and bioactivity. The aim of this research is to evaluate the effect of the pH’s electrolyte and doping element on the morphology, roughness, chemical, and phasic composition of hydroxyapatite-based coatings obtained by pulsed galvanostatic electrochemical deposition. As doping elements, both Sr and Ag were selected due to their good osseoinductive character and antibacterial effect, respectively. The electrolytes were prepared at pH 4 and 5, in which specific concentrations of Sr, Ag, and Sr + Ag were added. In terms of morphology, all coatings consist in ribbon-like crystals, which at pH 5 appear to be a little larger. Addition of Sr did not affect the morphology of HAp, while Ag addition has led to the formation of flower-like crystals agglomeration. When both doping elements were added, the flowers like agglomerations caused by the Ag have diminished, indicating the competition between Sr and Ag. X-Ray Diffraction analysis has highlighted that Sr and/or Ag have successfully substituted the Ca in the HAp structure. Moreover, at higher pH, the crystallinity of all HAp coatings was enhanced. Thus, it can be said that the electrolyte’s pH enhances to some extent the properties of HAp-based coatings, while the addition of Sr and/or Ag does not negatively impact the obtained features of HAp, indicating that by using pulsed galvanostatic electrochemical deposition, materials with tunable features dictated by the function of the coated medical device can be designed

    Optical Properties and Stability of Copper Thin Films for Transparent Thermal Heat Reflectors

    No full text
    The use of thin metallic layers at the thickness limit where transparency or spectral selectivity are achieved is gaining increased interest. The use of cheap and abundant materials is desirable in the attempt to avoid environment or economical costs. The use of Cu as a replacement for Ag as a heat reflector is one of the solutions that can be employed. The stability over time is a known issue, copper being prone to atmospheric oxidation and degradation. In this contribution, the stability of Cu obtained by magnetron sputtering is investigated, using both DC and HiPIMS processes for obtaining the Cu thin films. The bias voltage is used to obtain thin films with different properties, their time stability being investigated through the variation of spectrophotometric curves. The best performing thin films are evaluated in theoretical heat reflector structures, using SiNx of different qualities as dielectric layers to form the dielectric/metal/dielectric structure

    Development and Evaluation of Copper Based Transparent Heat Reflectors Obtained by Magnetron Sputtering

    No full text
    Within the next few years climate change is likely to become a major concern for mankind. In addition, the current electronic components shortage crisis has led to an urgent need for alternative solutions in the main industry sectors (the raw materials, manufacturing, and construction industries). The current trends of research are focused on developing smart materials with functional properties, using abundant raw materials. The energy saving efforts are sustained in the glazing industries by several approaches based on dielectric-metal-dielectric multilayer structures. The use of silver to achieve a high reflectivity in near-infrared spectral range has been proposed and is already adopted as a commercially available solution. This work is focused on developing a transparent heat reflector (THR) with prefigured optical properties, using copper as a reflective layer, a material that is more abundant and cheaper than silver. The conductive copper layers obtained by the High Power Impulse Magnetron Sputtering (HiPIMS) method were interposed between two silicon nitride layers deposited by the Radio-Frequency Magnetron Sputtering (RFMS) technique. The structural, optical, and elemental composition of monolayers was investigated, qualifying each individual material for use in the multilayer structure. The time stability of films deposited on microscope glass substrates was also investigated, as an important criterion for the selection of monolayers. The obtained results revealed that the SiNx/Cu/SiNx with the Cu layer deposited by using a negative substrate bias of −100 V showed the most stable behavior over time. Optical modeling was performed to design a THR multilayer structure, which was successfully obtained experimentally. A maximum optical transparency as high as 75% in the visible range and a reflectivity of ~ 85% in near infrared spectral interval was confirmed for the experimentally obtained multilayer structures

    A Strategy for Alleviating Micro Arcing during HiPIMS Deposition of DLC Coatings

    No full text
    In this work, we investigate the use of high power impulse magnetron sputtering (HiPIMS) for the deposition of micrometer thick diamond like carbon (DLC) coatings on Si and steel substrates. The adhesion on both types of substrates is ensured with a simple Ti interlayer, while the energy of impinging ions is adjusted by using RF (Radio Frequency) biasing on the substrate at -100 V DC self-bias. Addition of acetylene to the working Ar+Ne atmosphere is investigated as an alternative to Ar sputtering, to improve process stability and coatings quality. Peak current is maintained constant, providing reliable comparison between different deposition conditions used in this study. The main advantages of adding acetylene to the Ar+Ne gas mixture are an increase of deposition rate by a factor of 2, when comparing to the Ar+Ne process. Moreover, a decrease of the number of surface defects, from similar to 40% surface defects coverage to similar to 1% is obtained, due to reduced arcing. The mechanical and tribological properties of the deposited DLC films remain comparable for all investigated gas compositions. Nanoindentation hardness of all coatings is in the range of 25 to 30 GPa, friction coefficient is between 0.05 and 0.1 and wear rate is in the range of 0.47 to 0.77 x 10(-6) mm(3) N(-1)m(-1)

    Enhancement of the Corrosion Resistance of 304 Stainless Steel by Cr–N and Cr(N,O) Coatings

    No full text
    Chromium nitride and oxynitride coatings were deposited as monolayers ((Cr–N), Cr(N,O)) and bilayers (Cr–N/Cr(N,O), Cr(N,O)/Cr–N) on 304 steel substrates by reactive cathodic arc method. The coatings were characterised by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDS), surface profilometry, and scratch tester. The anticorrosive properties of the coatings were assessed by electrochemical tests in 0.10 M NaCl + 1.96 M H2O2, carried out at 24 °C. Cr2N, CrN, and Cr(N,O) phases were identified in the coatings by grazing incidence X-ray diffraction (GI-XRD) measurements. The measured adhesion values ranged from 19 N to 35 N, the highest value being obtained for the bilayer with Cr(N,O) on top. Electrochemical tests showed that Cr(N,O) presence in both mono- and bilayered coatings determined the lowest damage in corrosive solution, as compared to the Cr–N coatings. This improvement was ascribed to the more compact structure, lower coatings porosity, and smoother surface
    corecore