10 research outputs found

    Anticorrosion coated stainless steel as durable support for C-N-TiO2 photo catalyst layer

    Get PDF
    The development of durable photocatalytic supports resistant in harsh environment has become challenging in advanced oxidation processes (AOPs) focusing on water and wastewater remediation. In this study, stainless steel (SS), SS/Ti (N,O) and SS/Cr-N/Cr (N,O) anticorrosion layers on SS meshes were dip-coated with sol gel synthesised C-N-TiO2 photo catalysts pyrolysed at 350ā—¦C for 105 min, using a heating rate of 50ā—¦C/min under N2 gas. The supported C-N-TiO2 ļ¬lms were characterized by scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (EDS), X-ray diļ¬€raction (XRD) and Raman spectroscopy. The results showed that C-N-TiO2 was successfully deposited on anticorrosion coated SS supports and had diļ¬€erent morphologies. The amorphous C and TiO2 were predominant in C-N-TiO2 over anatase and rutile phases on the surface of Scandent corrosion supports. TheC-N-TiO2 coated ļ¬lms showed enhanced photocatalytic activity for the discoloration of O.II dye under both solar and UV radiations. The fabricated C-N-TiO2 ļ¬lms showed signiļ¬cant antibacterial activities in the dark as well as in visible light. Herein, we demonstrate that SS/Ti(N,O) and SS/Cr-N/Cr(N,O) anticorrosion coatings are adequate photocatalytic and corrosion resistant supports. The C-N-TiO2 photo catalytic coatings can be used for water and wastewater decontamination of pollutants and microbes

    Corrosion improvement of 304l stainless steel by zrsin and zrsi(N,o) mono-and double-layers prepared by reactive cathodic arc evaporation

    Get PDF
    Zr-based nitrides and oxynitrides were deposited by reactive cathodic arc evaporation in monolayer and double-layer structures with the aim of increasing the corrosion protection of 304L stainless steel (SS) in a biomedical aggressive environment. All coatings had a total thickness of 1.2 m. Compared to the bare substrate, the surface roughness of the coated samples was higher, the presence of microdroplets being revealed by scanning electron micrography (SEM). The X-ray diffraction investigation of the ZrN phases revealed that the peaks shifted towards lower Bragg angles and the lattice constants increased as a result of Si and O2 inclusion in ZrN lattice, and of the ion bombardment characteristic of the cathodic arc method, augmented by the applied bias substrate. SS/ZrSiN/ZrSi(N,O) showed the best corrosion performance in an acidic environment (0.9% NaCl and 6% H2O2; pH = 4), which was ascribed to the blocking effect of the interfaces, which acted as a corrosion barrier for the electrolyte ingress. Moreover, the aforementioned bilayer had the highest amount of Si and O in the composition of the top layer, forming a stable passive layer with beneficial effects on corrosion protection

    Block Copolymer Elastomer with Graphite Filler: Effect of Processing Conditions and Silane Coupling Agent on the Composite Properties

    Get PDF
    The control of morphology and interface in poly(styrene-ethylene/butylene-styrene) (SEBS) composites with graphitic fillers is extremely important for the design of piezoresistive sensors for body motion or flexible temperature sensors. The effects of a high amount of graphite (G) and silane coupling agent on the morphology and properties of SEBS composites with anisotropic mechanical properties are reported. The physical and chemical bonding of silane to both G and SEBS surface was proved by EDX and TGA results; this improved interface influenced both the thermal and mechanical properties of the composite. The vinyltriethoxysilane (VS) promoted the formation of char residue and, being tightly bound to both SEBS and G, did not show separate decomposition peak in the TGA curve of composites. The mechanical properties were measured on two perpendicular directions and were improved by both the addition of VS and the increased amount of G; however, the increase of storage modulus due to orientation (from 5 to 15 times depending on the composition and direction of the test) was more important than that provided by the increase of G concentration, which was a maximum of four times that obtained for 15 wt % graphite. A mechanism to explain the influence of G content and treatment on the variation of storage modulus and tan Ī“ depending on the direction of the test was also proposed

    Effect of Doping Element and Electrolyte’s pH on the Properties of Hydroxyapatite Coatings Obtained by Pulsed Galvanostatic Technique

    No full text
    Hydroxyapatite (HAp) is the most widely used calcium phosphate as a coating on metal implants due to its biocompatibility and bioactivity. The aim of this research is to evaluate the effect of the pH’s electrolyte and doping element on the morphology, roughness, chemical, and phasic composition of hydroxyapatite-based coatings obtained by pulsed galvanostatic electrochemical deposition. As doping elements, both Sr and Ag were selected due to their good osseoinductive character and antibacterial effect, respectively. The electrolytes were prepared at pH 4 and 5, in which specific concentrations of Sr, Ag, and Sr + Ag were added. In terms of morphology, all coatings consist in ribbon-like crystals, which at pH 5 appear to be a little larger. Addition of Sr did not affect the morphology of HAp, while Ag addition has led to the formation of flower-like crystals agglomeration. When both doping elements were added, the flowers like agglomerations caused by the Ag have diminished, indicating the competition between Sr and Ag. X-Ray Diffraction analysis has highlighted that Sr and/or Ag have successfully substituted the Ca in the HAp structure. Moreover, at higher pH, the crystallinity of all HAp coatings was enhanced. Thus, it can be said that the electrolyte’s pH enhances to some extent the properties of HAp-based coatings, while the addition of Sr and/or Ag does not negatively impact the obtained features of HAp, indicating that by using pulsed galvanostatic electrochemical deposition, materials with tunable features dictated by the function of the coated medical device can be designed

    Thin Films Deposition of Ta2O5 and ZnO by E-Gun Technology on Co-Cr Alloy Manufactured by Direct Metal Laser Sintering

    No full text
    In recent years in the dental field, new types of materials and techniques for the manufacturing of dental crowns and analog implants have been developed to improve the quality of these products. The objective of this article was to perform the surface characterization and determine the properties of Co-Cr alloy samples fabricated by the direct metal laser sintering (DMLS) process and coated by e-gun technology with thin films of Ta2O5 and ZnO. Both oxides are frequently used for dental products, in pharmacology, cosmetics, and medicine, due to their good anticorrosive, antibacterial, and photo-catalytic properties. Following the deposition of thin oxide films on the Co-Cr samples fabricated by DMLS, a very fine roughness in the order of nanometers was obtained. Thin films deposition was realized to improve the hardness and the roughness of the Co-Cr parts fabricated by the DMLS process. Surface characterization was performed using SEM-EDS, AFM, and XRD. AFM was used to determine the roughness of the samples and the nanoindentation curves were determined to establish the hardness values and modulus of elasticity

    A Strategy for Alleviating Micro Arcing during HiPIMS Deposition of DLC Coatings

    No full text
    In this work, we investigate the use of high power impulse magnetron sputtering (HiPIMS) for the deposition of micrometer thick diamond like carbon (DLC) coatings on Si and steel substrates. The adhesion on both types of substrates is ensured with a simple Ti interlayer, while the energy of impinging ions is adjusted by using RF (Radio Frequency) biasing on the substrate at -100 V DC self-bias. Addition of acetylene to the working Ar+Ne atmosphere is investigated as an alternative to Ar sputtering, to improve process stability and coatings quality. Peak current is maintained constant, providing reliable comparison between different deposition conditions used in this study. The main advantages of adding acetylene to the Ar+Ne gas mixture are an increase of deposition rate by a factor of 2, when comparing to the Ar+Ne process. Moreover, a decrease of the number of surface defects, from similar to 40% surface defects coverage to similar to 1% is obtained, due to reduced arcing. The mechanical and tribological properties of the deposited DLC films remain comparable for all investigated gas compositions. Nanoindentation hardness of all coatings is in the range of 25 to 30 GPa, friction coefficient is between 0.05 and 0.1 and wear rate is in the range of 0.47 to 0.77 x 10(-6) mm(3) N(-1)m(-1)

    Electrochemical Surface Biofunctionalization of Titanium through Growth of TiO2 Nanotubes and Deposition of Zn Doped Hydroxyapatite

    No full text
    The current research aim is to biofunctionalize pure titanium (Ti, grade IV) substrate with titania nanotubes and Zn doped hydroxyapatite-based coatings by applying a duplex electrochemical treatment, and to evaluate the influence of Zn content on the physico-chemical properties of hydroxyapatite (HAp). The obtained nanostructured surfaces were covered with HAp-based coatings doped with Zn in different concentrations by electrochemical deposition in pulsed galvanostatic mode. The obtained surfaces were characterized in terms of morphology, elemental and phasic composition, chemical bonds, roughness, and adhesion. The nanostructured surface consisted of titania nanotubes (NT), aligned, vertically oriented, and hollow, with an inner diameter of ~70 nm. X-ray Diffraction (XRD) analysis showed that the nanostructured surface consists of an anatase phase and some rutile peaks as a secondary phase. The morphology of all coatings consisted of ribbon like-crystals, and by increasing the Zn content the coating became denser due to the decrement of the crystals’ dimensions. The elemental and phase compositions evidenced that HAp was successfully doped with Zn through the pulsed galvanostatic method on the Ti nanostructured surfaces. Fourier Transform Infrared spectroscopy (FTIR) and XRD analysis confirmed the presence of HAp in all coatings, while the adhesion test showed that the addition of a high quantity leads to some delamination. Based on the obtained results, it can be said that the addition of Zn enhances the properties of HAp, and through proper experimental design, the concentration of Zn can be modulated to achieve coatings with tunable features

    SiC- and Ag-SiC-Doped Hydroxyapatite Coatings Grown Using Magnetron Sputtering on Ti Alloy for Biomedical Application

    No full text
    SiC- and Ag-SiC-doped hydroxyapatite (HA) coatings were deposited via magnetron sputtering aiming at increased corrosion protection of Ti-10Nb-10Zr-5Ta alloy in simulated body fluid environment and superior mechanical properties compared to plain hydroxyapatite. The coatings had a total thickness of about 350 nm. The X ray diffraction patterns indicate that HA coatings are polycrystalline with a hexagonal structure and the addition of SiC determined the coating amorphization. All coatings presented a lower roughness compared to the Ti alloy and were hydrophilic. Ag-SiC-HA coating presented the best corrosion resistance and tribological parameters. All coatings were biocompatible, as ascertained via indirect cytocompatibility studies conducted on Vero cells

    Implant Surfaces Containing Bioglasses and Ciprofloxacin as Platforms for Bone Repair and Improved Resistance to Microbial Colonization

    No full text
    Coatings are an attractive and challenging selection for improving the bioperformance of metallic devices. Composite materials based on bioglass/antibiotic/polymer are herein proposed as multifunctional thin films for hard tissue implants. We deposited a thin layer of the polymeric material by matrix-assisted pulsed laser evaporationā€”MAPLE onto Ti substrates. A second layer consisting of bioglass + antibiotic was applied by MAPLE onto the initial thin film. The antimicrobial activity of MAPLE-deposited thin films was evaluated on Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, and Pseudomonas aeruginosa standard strains. The biocompatibility of obtained thin films was assessed on mouse osteoblast-like cells. The results of our study revealed that the laser-deposited coatings are biocompatible and resistant to microbial colonization and biofilm formation. Accordingly, they can be considered viable candidates for biomedical devices and contact surfaces that would otherwise be amenable to contact transmission
    corecore