34 research outputs found

    The Granzyme B ELISPOT assay: an alternative to the (51)Cr-release assay for monitoring cell-mediated cytotoxicity

    Get PDF
    BACKGROUND: The interferon-γ (IFN-γ) ELISPOT assay is one of the most useful techniques for immunological monitoring of cancer vaccine trials and has gained increased application as a measure of specific T cell activation. However, it does not assess cell-mediated cytotoxicity directly as IFN-γ secretion is not limited to only cytolytic cells. Granzyme B (GrB) is a key mediator of target cell death via the granule-mediated pathway. Therefore, the release of GrB by cytolytic lymphocytes upon effector-target interaction may be a more specific indicator of CTL and NK cytotoxic ability than IFN-γ secretion. METHODS: We assessed whether the GrB ELISPOT assay is a viable alternative to the (51)Cr-release and IFN-γ ELISPOT assays for measuring antigen-specific CTL cytotoxicity. Direct comparisons between the three assays were made using human CTL cell lines (αEN-EBV and αJY) and an in vitro stimulated anti-Flu matrix peptide (FMP)-specific CTL. RESULTS: When the GrB ELISPOT was directly compared to the IFN-γ ELISPOT and (51)Cr-release assays, excellent cross-correlation between all three assays was shown. However, measurable IFN-γ secretion in the ELISPOT assay was observed only after 1 hour of incubation and cytotoxicity assessed via the (51)Cr-release assay after 4 hours, whereas GrB secretion was detectable within 10 min of effector-target contact with significant secretion observed after 1 h. Titration studies demonstrated a strong correlation between the number of effector cells and GrB spots per well. Irrelevant targets or antigens did not induce significant GrB secretion. Additionally, GrB secretion was abrogated when CTL cultures were depleted of CD8+ cells. CONCLUSION: Our findings demonstrate that the GrB ELISPOT assay is a superior alternative to the (51)Cr-release assay since it is significantly more sensitive and provides an estimation of cytotoxic effector cell frequency. Additionally, unlike the IFN-γ ELISPOT assay, the GrB ELISPOT directly measures the release of a cytotolytic protein. Detection of low frequency tumor-specific CTL and their specific effector functions can provide valuable insight with regards to immunological responses

    Evaluating the cytotoxicity of innate immune effector cells using the GrB ELISPOT assay

    Get PDF
    BACKGROUND: This study assessed the Granzyme B (GrB) ELISPOT as a viable alternative to the (51)Cr-release assay for measuring cytotoxic activity of innate immune effector cells. We strategically selected the GrB ELISPOT assay because GrB is a hallmark effector molecule of cell-mediated destruction of target cells. METHODS: We optimized the GrB ELISPOT assay using the human-derived TALL-104 cytotoxic cell line as effectors against K562 target cells. Titration studies were performed to assess whether the ELISPOT assay could accurately enumerate the number of GrB-secreting effector cells. TALL-104 were treated with various secretion inhibitors and utilized in the GrB ELISPOT to determine if GrB measured in the ELISPOT was due to degranulation of effector cells. Additionally, CD107a expression on effector cells after effector-target interaction was utilized to further confirm the mechanism of GrB release by TALL-104 and lymphokine-activated killer (LAK) cells. Direct comparisons between the GrB ELISPOT, the IFN-γ ELISPOT and the standard (51)Cr-release assays were made using human LAK cells. RESULTS: Titration studies demonstrated a strong correlation between the number of TALL-104 and LAK effector cells and the number of GrB spots per well. GrB secretion was detectable within 10 min of effector-target contact with optimal secretion observed at 3–4 h; in contrast, optimal IFN-γ secretion was not observed until 24 h. The protein secretion inhibitor, brefeldin A, did not inhibit the release of GrB but did abrogate IFN-γ production by TALL-104 cells. GrB secretion was abrogated by BAPTA-AM (1,2-bis-(2-aminophenoxy)ethane-N,N,N', N'-tetraacetic acid tetra(acetoxymethyl) ester), which sequesters intracellular Ca(2+), thereby preventing degranulation. The number of effector cells expressing the degranulation associated glycoprotein CD107a increased after interaction with target cells and correlated with the stimulated release of GrB measured in the ELISPOT assay. CONCLUSIONS: Because of its high sensitivity and ability to estimate cytotoxic effector cell frequency, the GrB ELISPOT assay is a viable alternative to the (51)Cr-release assay to measure MHC non-restricted cytotoxic activity of innate immune cells. Compared to the IFN-γ ELISPOT assay, the GrB ELISPOT may be a more direct measure of cytotoxic cell activity. Because GrB is one of the primary effector molecules in natural killer (NK) cell-mediated killing, detection and enumeration of GrB secreting effector cells can provide valuable insight with regards to innate immunological responses

    A modified human ELISPOT assay to detect specific responses to primary tumor cell targets

    Get PDF
    BACKGROUND: The desired outcome of cancer vaccination is to induce a potent T cell response which can specifically recognize and eliminate autologous tumor cells in vivo. Accordingly, immunological assays that demonstrate recognition of native tumor cells (tumor-specific) may be more clinically relevant than assays that demonstrate recognition of tumor protein or peptide (antigen-specific). METHODS: Towards this goal, we adapted the IFN-γ ELISPOT assay to measure immune responses against autologous primary tumor cells in vaccinated cancer patients. As a model system to develop the assay, we utilized peripheral blood mononuclear cells (PBMC) directly isolated from follicular lymphoma patients vaccinated with tumor-derived idiotype protein. RESULTS: After optimizing several variables, we demonstrated that the modified IFN-γ ELISPOT assay could be used to reliably and reproducibly determine the tumor-reactive T cell frequency in the PBMC of these patients. The precursor frequency of tumor-reactive T cells was significantly higher in the postvaccine PBMC, compared with prevaccine samples in all patients tested. Furthermore, the specificity of these T cells was established by the lack of reactivity against autologous normal B cells. CONCLUSIONS: These results demonstrate the feasibility of quantitating tumor-specific T cell responses when autologous, primary tumor cells are available as targets

    A systematic approach to biomarker discovery; Preamble to "the iSBTc-FDA taskforce on immunotherapy biomarkers"

    Get PDF
    The International Society for the Biological Therapy of Cancer (iSBTc) has initiated in collaboration with the United States Food and Drug Administration (FDA) a programmatic look at innovative avenues for the identification of relevant parameters to assist clinical and basic scientists who study the natural course of host/tumor interactions or their response to immune manipulation. The task force has two primary goals: 1) identify best practices of standardized and validated immune monitoring procedures and assays to promote inter-trial comparisons and 2) develop strategies for the identification of novel biomarkers that may enhance our understating of principles governing human cancer immune biology and, consequently, implement their clinical application. Two working groups were created that will report the developed best practices at an NCI/FDA/iSBTc sponsored workshop tied to the annual meeting of the iSBTc to be held in Washington DC in the Fall of 2009. This foreword provides an overview of the task force and invites feedback from readers that might be incorporated in the discussions and in the final document

    Emerging concepts in biomarker discovery; The US-Japan workshop on immunological molecular markers in oncology

    Get PDF
    Supported by the Office of International Affairs, National Cancer Institute (NCI), the "US-Japan Workshop on Immunological Biomarkers in Oncology" was held in March 2009. The workshop was related to a task force launched by the International Society for the Biological Therapy of Cancer (iSBTc) and the United States Food and Drug Administration (FDA) to identify strategies for biomarker discovery and validation in the field of biotherapy. The effort will culminate on October 28th 2009 in the "iSBTc-FDA-NCI Workshop on Prognostic and Predictive Immunologic Biomarkers in Cancer", which will be held in Washington DC in association with the Annual Meeting. The purposes of the US-Japan workshop were a) to discuss novel approaches to enhance the discovery of predictive and/or prognostic markers in cancer immunotherapy; b) to define the state of the science in biomarker discovery and validation. The participation of Japanese and US scientists provided the opportunity to identify shared or discordant themes across the distinct immune genetic background and the diverse prevalence of disease between the two Nations
    corecore