6 research outputs found

    Study on the Neuroprotective, Radical-Scavenging and MAO-B Inhibiting Properties of New Benzimidazole Arylhydrazones as Potential Multi-Target Drugs for the Treatment of Parkinson’s Disease

    No full text
    Oxidative stress is a key contributing factor in the complex degenerating cascade in Parkinson’s disease. The inhibition of MAO-B affords higher dopamine bioavailability and stops ROS formation. The incorporation of hydroxy and methoxy groups in the arylhydrazone moiety of a new series of 1,3-disubstituted benzimidazole-2-thiones could increase the neuroprotective activity. In vitro safety evaluation on SH-SY5Y cells and rat brain synaptosomes showed a strong safety profile. Antioxidant and neuroprotective effects were evaluated in H2O2-induced oxidative stress on SH-SY5Y cells and in a model of 6-OHDA-induced neurotoxicity in rat brain synaptosomes, where the dihydroxy compounds 3h and 3i demonstrated the most robust neuroprotective and antioxidant activity, more pronounced than the reference melatonin and rasagiline. Statistically significant MAO-B inhibitory effects were exerted by some of the compounds where again the catecholic compound 3h was the most potent inhibitor similar to selegiline and rasagiline. The most potent antioxidant effect in the ferrous iron induced lipid peroxidation assay was observed for the three catechols—3h and 3j, 3q. The catecholic compound 3h showed scavenging capability against superoxide radicals and antioxidant effect in the iron/deoxyribose system. The study outlines a perspective multifunctional compound with the best safety profile, neuroprotective, antioxidant and MAO-B inhibiting properties

    Hepatotoxicity and antioxidant activity of some new N,N′-disubstituted benzimidazole-2-thiones, radical scavenging mechanism and structure-activity relationship

    No full text
    A new method for the synthesis of 1,3-disubstituted benzimidazole derivatives was developed using aza-Michael addition. The target compounds were synthesized in good yields and purity and tested on isolated hepatocytes for their toxicity and antioxidant activity. The antioxidant properties of the substances with lowest toxicity were evaluated using oxidative stress induced by tert-butyl hydroperoxide (tert-BOOH). Some of them as methyl 3-[3-(3-methoxy-3-oxopropyl)-5-benzoyl-2-thioxo-2,3-dihydro-1H-benzimidazol-1-yl]propanoate 10 and 1,3-bis[3-(hydrazinooxy)-3-oxopropyl]-5-benzoyl-1,3-dihydro-2H-benzimidazole-2-thione 15 exhibited statistically significant cytoprotective and antioxidant effects which were similar to those of quercetin. In order to estimate the influence of the structure on the biological properties, structural characterization of the studied compounds was performed by X-ray diffraction analysis and DFT methods. On the basis of the calculated reaction enthalpies of hydrogen atom abstraction (HAT mechanism) and single-electron transfer (SET mechanism) the mechanisms of the antioxidant action of the tested compounds were studied. Subsequently it was established that the HAT mechanism governs the radical scavenging of 10 and 15 in the lipid phase, while the SET mechanism is preferred in water medium for 10 and competitive to HAT for 15

    The molecular pharmacology of AMD11070: An orally bioavailable CXCR4 HIV entry inhibitor

    No full text
    In order to enter and infect human cells HIV must bind to CD4 in addition to either the CXCR4 or the CCR5 chemokine receptor. AMD11070 was the first orally available small molecule antagonist of CXCR4 to enter the clinic. Herein we report the molecular pharmacology of AMD11070 which is a potent inhibitor of X4 HIV-1 replication and the gp120/CXCR4 interaction. Using the CCRF-CEM T cell line that endogenously expresses CXCR4 we have demonstrated that AMD11070 is an antagonist of SDF-1α ligand binding (IC(50)=12.5±1.3nM), inhibits SDF-1 mediated calcium flux (IC(50)=9.0±2.0nM) and SDF-1α mediated activation of the CXCR4 receptor as measured by a Eu-GTP binding assay (IC(50)=39.8±2.5nM) or a [(35)S]-GTPγS binding assay (IC(50)=19.0±4.1nM), and inhibits SDF-1α stimulated chemotaxis (IC(50)=19.0±4.0nM). AMD11070 does not inhibit calcium flux of cells expressing CXCR3, CCR1, CCR2b, CCR4, CCR5 or CCR7, or ligand binding to CXCR7 and BLT(1), demonstrating selectivity for CXCR4. In addition AMD11070 is able to inhibit the SDF-1β isoform interactions with CXCR4; and N-terminal truncated variants of CXCR4 with equal potency to wild type receptor. Further mechanistic studies indicate that AMD11070 is an allosteric inhibitor of CXCR4.status: publishe
    corecore