19 research outputs found

    Natura 2000 in Romania: Habitat fact-sheets

    No full text

    Lower Cretaceous Provenance and Sedimentary Deposition in the Eastern Carpathians: Inferences for the Evolution of the Subducted Oceanic Domain and its European Passive Continental Margin

    Get PDF
    Abstract Reconstructing orogenic systems made up dominantly by sediments accreted in trenches is challenging because of the incomplete lithological record of the subducted oceanic domain and its attached passive continental margin thrusted by collisional processes. In this respect, the remarkable ~600 km long continuity of sediments exposed in the Eastern Carpathian thin-skinned thrust and fold belt and the availability of quantitative reconstructions for adjacent continental units provide excellent conditions for a paleogeographical study by provenance and sedimentological techniques constraining sediment routing and depositional systems. These sediments were deposited in the Ceahl?u-Severin branch of the Alpine Tethys Ocean and over its European passive continental margin. We report sedimentological, paleomagnetic, petrographic, and detrital zircon U-Pb data of Lower Cretaceous sediments from several thin-skinned tectonic units presumably deposited in the Moldavides domain of the Eastern Carpathians. Sedimentological observations in the innermost studied unit demonstrate that deposition took place in a deepwater basin floor sheets to sandy turbidite system. Detrital zircon age data demonstrate sourcing from internal Carpathian basement units. The sediment routing changes in more external units, where black shales basin floor sheets to sandy mud turbidites were sourced from an external, European continental area. Although some degree of mixing between sources located on both margins of the ocean occurred, constraining a relatively narrow width of the deep oceanic basin, these results demonstrate that the internal-most studied unit was deposited near an Early Cretaceous accretionary wedge, located on the opposite internal side relative to the passive continental margin domain of other Moldavides units

    Lower Cretaceous Provenance and Sedimentary Deposition in the Eastern Carpathians: Inferences for the Evolution of the Subducted Oceanic Domain and its European Passive Continental Margin

    Get PDF
    Reconstructing orogenic systems made up dominantly by sediments accreted in trenches is challenging because of the incomplete lithological record of the subducted oceanic domain and its attached passive continental margin thrusted by collisional processes. In this respect, the remarkable similar to 600 km long continuity of sediments exposed in the Eastern Carpathian thin-skinned thrust and fold belt and the availability of quantitative reconstructions for adjacent continental units provide excellent conditions for a paleogeographical study by provenance and sedimentological techniques constraining sediment routing and depositional systems. These sediments were deposited in the Ceahlau-Severin branch of the Alpine Tethys Ocean and over its European passive continental margin. We report sedimentological, paleomagnetic, petrographic, and detrital zircon U-Pb data of Lower Cretaceous sediments from several thin-skinned tectonic units presumably deposited in the Moldavides domain of the Eastern Carpathians. Sedimentological observations in the innermost studied unit demonstrate that deposition took place in a deepwater basin floor sheets to sandy turbidite system. Detrital zircon age data demonstrate sourcing from internal Carpathian basement units. The sediment routing changes in more external units, where black shales basin floor sheets to sandy mud turbidites were sourced from an external, European continental area. Although some degree of mixing between sources located on both margins of the ocean occurred, constraining a relatively narrow width of the deep oceanic basin, these results demonstrate that the internal-most studied unit was deposited near an Early Cretaceous accretionary wedge, located on the opposite internal side relative to the passive continental margin domain of other Moldavides units.6 month embargo; first published: 20 April 2020This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Lower Cretaceous Provenance and Sedimentary Deposition in the Eastern Carpathians: Inferences for the Evolution of the Subducted Oceanic Domain and its European Passive Continental Margin

    No full text
    Reconstructing orogenic systems made up dominantly by sediments accreted in trenches is challenging because of the incomplete lithological record of the subducted oceanic domain and its attached passive continental margin thrusted by collisional processes. In this respect, the remarkable similar to 600 km long continuity of sediments exposed in the Eastern Carpathian thin-skinned thrust and fold belt and the availability of quantitative reconstructions for adjacent continental units provide excellent conditions for a paleogeographical study by provenance and sedimentological techniques constraining sediment routing and depositional systems. These sediments were deposited in the Ceahlau-Severin branch of the Alpine Tethys Ocean and over its European passive continental margin. We report sedimentological, paleomagnetic, petrographic, and detrital zircon U-Pb data of Lower Cretaceous sediments from several thin-skinned tectonic units presumably deposited in the Moldavides domain of the Eastern Carpathians. Sedimentological observations in the innermost studied unit demonstrate that deposition took place in a deepwater basin floor sheets to sandy turbidite system. Detrital zircon age data demonstrate sourcing from internal Carpathian basement units. The sediment routing changes in more external units, where black shales basin floor sheets to sandy mud turbidites were sourced from an external, European continental area. Although some degree of mixing between sources located on both margins of the ocean occurred, constraining a relatively narrow width of the deep oceanic basin, these results demonstrate that the internal-most studied unit was deposited near an Early Cretaceous accretionary wedge, located on the opposite internal side relative to the passive continental margin domain of other Moldavides units.6 month embargo; first published: 20 April 2020This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Video games in the family context : how do digital media influence the relationship between children and their parents?

    No full text
    "The eighth chapter of our book discusses video games in the family context. Video games are becoming one of the most important cultural industries. The role of this medium in the contemporary culture is reflected in the attendant numbers: the population of gamers is growing and they devote an increasing amount of time to their hobby. This, in turn, significantly affects leisure activities across different social categories. Furthermore, this change impacts the global economy as evidenced by dramatically increased gaming market revenues. The growing population of gamers includes children, for whom video games are not only a favourite media, but also a sphere of socialisation, primarily within the family. This chapter presents conclusions from a study on the role of video games in the life of a modern family. The study particularly focuses on the issue of technological and cultural competencies of children and their parents. This chapter is an attempt to deepen the analysis of the impact video games on the family environment.

    New data on the Vrancea Nappe (Moldavidian Basin, Outer Carpathian Domain, Romania): paleogeographic and geodynamic reconstructions

    No full text
    A study has been performed on the Cretaceous to Early Miocene succession of the Vrancea Nappe (Outer Carpathians, Romania), based on field reconstruction of the stratigraphic record, mineralogical-petrographic and geochemical analyses. Extra-basinal clastic supply and intra-basinal autochthonous deposits have been differentiated, appearing laterally inter-fingered and/or interbedded. The main clastic petrofacies consist of calcarenites, sub-litharenites, quartzarenites, sub-arkoses, and polygenic conglomerates derived from extra-basinal margins. An alternate internal and external provenance of the different supplies is the result of the paleogeographic re-organization of the basin/margins system due to tectonic activation and exhumation of rising areas. The intra-basinal deposits consist of black shales and siliceous sediments (silexites and cherty beds), evidencing major environmental changes in the Moldavidian Basin. Organic-matter-rich black shales were deposited during anoxic episodes related to sediment starvation and high nutrient influx due to paleogeographic isolation of the basin caused by plate drifting. The black shales display relatively high contents in sub-mature to mature, Type II lipidic organic matter (good oil and gas-prone source rocks) constituting a potentially active petroleum system. The intra-basinal siliceous sediments are related to oxic pelagic or hemipelagic environments under tectonic quiescence conditions although its increase in the Oligocene part of the succession can be correlated with volcanic supplies. The integration of all the data in the “progressive reorientation of convergence direction” Carpathian model, and their consideration in the framework of a foreland basin, led to propose some constrains on the paleogeographic-geodynamic evolutionary model of the Moldavidian Basin from the Late Cretaceous to the Burdigalian.This research was supported by Urbino University grant (responsible F. Guerrera), Italy; CGL2009-09249 and CGL2011-30153-CO2-02 research projects (Spanish Ministry of Education and Science), Research Groups and projects of the Generalitat Valenciana and from Alicante University (CTMA-IGA Spain); Research Contr. IDEI 436/01.10.2007 (CNCSIS-Romania)
    corecore