480 research outputs found

    Bulk-edge correspondence in the trimer Su-Schrieffer-Heeger model

    Get PDF

    Interdiffusion in dilute polymer mixtures. A subtle concentration effect

    Full text link
    Dynamic light scattering has been used to investigate the diffusional dynamics in very dilute polystyrene/poly(propylene oxide), PS/PPO, polymer blends. Compared to previous investigations in the field, this system is more suitable for this type of investigation due to the significant refractive index difference between the two components and the fact that the matrix (PPO) dynamics do not interfere with the measurements. The tracer diffusion coefficient of PS thus obtained in the limit of infinite dilution scales as N−0.8±0.04PS with the PS degree of polymerization, i.e., behavior intermediate between the limits of nondraining Zimm and free‐draining Rouse behavior. The effect of the addition of a third component even at tracer concentrations on the diffusion dynamics was investigated both experimentally and theoretically in the framework of the dynamic random phase approximation. Similarities and differences between theory and experiment were found that are rather due to a modification of hydrodynamic interactions.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/70731/2/JCPSA6-101-4-3222-1.pd

    THESSALONIKI SEISMIC HAZARD ASSESSMENT: PROBABILISTIC AND DETERMINISTIC APPROACH FOR ROCK SITE CONDITIONS

    Get PDF
    Within the framework of four research projects (RISK-EU, EUROSEISRISK, SRM_LIFE and LESSLOSS) extensive calculations were carried out assessing the seismic hazard in the Thessaloniki and surrounding area. The main results were derived from probabilistic and deterministic approaches taking into account rock site conditions for each examined site in the Metropolitan area of Thessaloniki. The expected strong-ground motions were calculated applying different methodologies. Two different groups worked for the assessment of the seismic hazard, the first one constituted of the INGV (Istituto Nazionale di Geofisica e Vulcanologia, Italy) and LSMF (Laboratory of Soil Mechanics and Foundation Engineering, Thessaloniki, Greece) and the second one of LSMF and ITSAK (Institute of Engineering Seismology and Earthquake Engineering, Thessaloniki, Greece)

    New Method for Phase transitions in diblock copolymers: The Lamellar case

    Full text link
    A new mean-field type theory is proposed to study order-disorder transitions (ODT) in block copolymers. The theory applies to both the weak segregation (WS) and the strong segregation (SS) regimes. A new energy functional is proposed without appealing to the random phase approximation (RPA). We find new terms unaccounted for within RPA. We work out in detail transitions to the lamellar state and compare the method to other existing theories of ODT and numerical simulations. We find good agreements with recent experimental results and predict that the intermediate segregation regime may have more than one scaling behavior.Comment: 23 pages, 8 figure

    Kinetic description of particle interaction with a gravitational wave

    Get PDF
    The interaction of charged particles, moving in a uniform magnetic field, with a plane-polarized gravitational wave is considered using the Fokker-Planck- Kolmogorov (FPK) approach. By using a stochasticity criterion, we determine the exact locations in phase space, where resonance overlapping occurs. We investigate the diffusion of orbits around each primary resonance of order (m) by deriving general analytical expressions for an effective diffusion coeficient. A solution to the corresponding diffusion equation (Fokker-Planck equation) for the static case is found. Numerical integration of the full equations of motion and subsequent calculation of the diffusion coefficient verifies the analytical results.Comment: LaTeX file, 15 page

    Particle acceleration by strong turbulence in solar flares: theory of spectrum evolution

    Full text link
    We propose a nonlinear self-consistent model of the turbulent non-resonant particle acceleration in solar flares. We simulate temporal evolution of the spectra of charged particles accelerated by strong long-wavelength MHD turbulence taking into account back reaction of the accelerated particles on the turbulence. The main finding is that the nonlinear coupling of accelerated particles and MHD turbulence result in prominent evolution of the spectra of accelerated particles, which can be either soft-hard-soft or soft-hard-harder depending on the particle injection efficiency. Such evolution patterns are widely observed in hard X-ray and gamma-ray emission from solar flares.Comment: ApJL in pres

    Lattice-gas simulations of Domain Growth, Saturation and Self-Assembly in Immiscible Fluids and Microemulsions

    Full text link
    We investigate the dynamical behavior of both binary fluid and ternary microemulsion systems in two dimensions using a recently introduced hydrodynamic lattice-gas model of microemulsions. We find that the presence of amphiphile in our simulations reduces the usual oil-water interfacial tension in accord with experiment and consequently affects the non-equilibrium growth of oil and water domains. As the density of surfactant is increased we observe a crossover from the usual two-dimensional binary fluid scaling laws to a growth that is {\it slow}, and we find that this slow growth can be characterized by a logarithmic time scale. With sufficient surfactant in the system we observe that the domains cease to grow beyond a certain point and we find that this final characteristic domain size is inversely proportional to the interfacial surfactant concentration in the system.Comment: 28 pages, latex, embedded .eps figures, one figure is in colour, all in one uuencoded gzip compressed tar file, submitted to Physical Review

    Radio Observations of the January 20, 2005 X-Class Event

    Full text link
    We present a multi-frequency and multi-instrument study of the 20 January 2005 event. We focus mainly on the complex radio signatures and their association with the active phenomena taking place: flares, CMEs, particle acceleration and magnetic restructuring. As a variety of energetic particle accelerators and sources of radio bursts are present, in the flare-ejecta combination, we investigate their relative importance in the progress of this event. The dynamic spectra of {Artemis-IV-Wind/Waves-Hiras with 2000 MHz-20 kHz frequency coverage, were used to track the evolution of the event from the low corona to the interplanetary space; these were supplemented with SXR, HXR and gamma-ray recordings. The observations were compared with the expected radio signatures and energetic-particle populations envisaged by the {Standard Flare--CME model and the reconnection outflow termination shock model. A proper combination of these mechanisms seems to provide an adequate model for the interpretation of the observational data.Comment: Accepted for publication in Solar Physic
    corecore