1,395 research outputs found

    Immunofluorescence evaluation of Myf5 and MyoD in masseter muscle of unilateral posterior crossbite patients

    Get PDF
    A unilateral posterior crossbite is a malocclusion where the low activity of the affected masseter muscle is compensated by the contralateral muscle hypertrophy. It is still unknown if, in the same condition, myogenesis with new fibre formation takes place. Aim: the aim of the present study was to evaluate the expression of myogenesis markers, such as Myf5 and MyoD, in masseter muscles of unilateral posterior crossbite patients. Materials and methods: biopsies from fifteen surgical patients with unilateral posterior crossbites have been analysed by immunofluorescence reactions. The results show the expression of Myf5 and MyoD in the contralateral muscle but not in the ipsilateral one. Moreover, statistical analysis shows the higher number of satellite cells in the contralateral side if compared to the ipsilateral one. Conclusions: these results suggest that in contralateral muscle, hyperplastic events take place, as well as hypertrophy

    Coverage and mobile sensor placement for vehicles on predetermined routes: a greedy heuristic approach

    Get PDF
    Road potholes are not only nuisance but can also damage vehicles and pose serious safety risks for drivers. Recently, a number of approaches have been developed for automatic pothole detection using equipment such as accelerometers, image sensors or LIDARs. Mounted on vehicles, such as taxis or buses, the sensors can automatically detect potholes as the vehicles carry out their normal operation. While prior work focused on improving the performance of a standalone device, it simply assumed that the sensors would be installed on the entire fleet of vehicles. When the number of sensors is limited it is important to select an optimal set of vehicles to make sure that they do not cover similar routes in order to maximize the total coverage of roads inspected by sensors. The paper investigates this problem for vehicles that follow pre-determined routes, formulates it as a linear optimization problem and proposes a solution based on a greedy heuristic. The proposed approach has been tested on an official London bus route dataset containing 713 routes and showed up to 78% improvement compared to a random sensor placement selected as a baseline algorithm

    Muscle-specific integrins in masseter muscle fibers of chimpanzees: an immunohistochemical study.

    Get PDF
    Most notably, recent comparative genomic analyses strongly indicate that the marked differences between modern human and chimpanzees are likely due more to changes in gene regulation than to modifications of the genes. The most peculiar aspect of hominoid karyotypes is that human have 46 chromosomes whereas gorillas and chimpanzees have 48. Interestingly, human and chimpanzees do share identical inversions on chromosome 7 and 9 that are not evident in the gorilla karyotype. Thus, the general phylogeny suggests that humans and chimpanzees are sister taxa; based on this, it seems that human-chimpanzee sequence similarity is an astonishing 99%. At this purpose, of particular interest is the inactivation of the myosin heavy chain 16 (MYH16) gene, most prominently expressed in the masticatory muscle of mammals. It has been showed that the loss of this gene in humans may have resulted in smaller masticatory muscle and consequential changes to cranio-facial morphology and expansion of the human brain case. Powerful masticatory muscles are found in most primates; contrarily, in both modern and fossil member Homo, these muscles are considerably smaller. The evolving hominid masticatory apparatus shifted towards a pattern of gracilization nearly simultaneously with accelerated encephalization in early Homo. To better comprehend the real role of the MYH16 gene, we studied the primary proteins present in the muscle fibers of humans and non-humans, in order to understand if they really can be influenced by MYH16 gene. At this aim we examined the muscle-specific integrins, alpha 7B and beta 1D-integrins, and their relative fetal isoforms, alpha 7A and beta 1A-integrins, analyzing, by immunohistochemistry, muscle biopsies of two components of a chimpanzee's group in captivity, an alpha male and a non-alpha male subjects; all these integrins participate in vital biological processes such as maintenance of tissue integrity, embryonic development, cell differentiation, and cell-extracellular matrix interactions. Our results demonstrated a different quantitative composition of integrins, in alpha male in respect to human and non-alpha male, hypothesizing that the MYH16 gene could modify the expression of integrins, influencing, in turn, the phenotype of muscle. In this way, alpha 7A-and beta 1A-integrin could determine the presence of type II fibers and then they could play a key role in the determination of contraction force. Then, MYH16 gene could be a common interactor of signalling between sarcoglycans and integrins in chimpanzee muscles

    Implementation of a herd management system with wireless sensor networks

    Get PDF
    This paper investigates an adaptation of Wireless Sensor Networks (WSNs) to cattle monitoring applications. The proposed solution facilitates the requirement for continuously assessing the condition of individual animals, aggregating and reporting this data to the farm manager. There are several existing approaches to achieving animal monitoring, ranging from using a store and forward mechanism to employing GSM-based techniques; these approaches only provide sporadic information and introduce a considerable cost in staffing and physical hardware. The core of this study is to overcome the aforementioned drawbacks by using alternative cheap, low power consumption sensor nodes capable of providing real-time communication at a reasonable hardware cost. In this paper, both the hardware and software has been designed to provide a solution which can obtain real-time data from dairy cattle whilst conforming to the limitations associated with WSNs implementations

    Evaluation of Feasibility and Impact of Attacks against the 6top Protocol in 6TiSCH Networks

    Get PDF
    The 6TiSCH architecture has been gaining attraction as a promising solution to ensure reliability and security for communication in applications for the Industrial Internet of Things (IIoT). While many different aspects of the architecture have been investigated in literature, an in-depth analysis of the security features included in its design is still missing. In this paper, we assess the security vulnerabilities of the 6top protocol, a core component of the 6TiSCH architecture for enabling network nodes to negotiate communication resources. Our analysis highlights two possible attacks against the 6top protocol that can impair network performance and reliability in a significant manner. To prove the feasibility of the attacks in practice, we implemented both of them on the Contiki-NG Operating System and tested their effectiveness on a simple deployment with three Zolertia RE-Mote sensor nodes. Also, we carried out a set of simulations using Cooja in order to assess their impact on larger networks. Our results show that both attacks reduce reliability in the overall network and increase energy consumption of the network nodes

    The Cerebellar Dopaminergic System

    Get PDF
    In the central nervous system (CNS), dopamine (DA) is involved in motor and cognitive functions. Although the cerebellum is not been considered an elective dopaminergic region, studies attributed to it a critical role in dopamine deficit-related neurological and psychiatric disorders [e.g., Parkinson's disease (PD) and schizophrenia (SCZ)]. Data on the cerebellar dopaminergic neuronal system are still lacking. Nevertheless, biochemical studies detected in the mammalians cerebellum high dopamine levels, while chemical neuroanatomy studies revealed the presence of midbrain dopaminergic afferents to the cerebellum as well as wide distribution of the dopaminergic receptor subtypes (DRD1-DRD5). The present review summarizes the data on the cerebellar dopaminergic system including its involvement in associative and projective circuits. Furthermore, this study also briefly discusses the role of the cerebellar dopaminergic system in some neurologic and psychiatric disorders and suggests its potential involvement as a target in pharmacologic and non-pharmacologic treatments

    Energy-Efficient Data Acquisition in Wireless Sensor Networks through Spatial Correlation

    No full text
    The application of Wireless Sensor Networks (WSNs) is restrained by their often-limited lifetime. A sensor node's lifetime is fundamentally linked to the volume of data that it senses, processes and reports. Spatial correlation between sensor nodes is an inherent phenomenon to WSNs, induced by redundant nodes which report duplicated information. In this paper, we report on the design of a distributed sampling scheme referred to as the 'Virtual Sampling Scheme' (VSS). This scheme is formed from two components: an algorithm for forming virtual clusters, and a distributed sampling method. VSS primarily utilizes redundancy of sensor nodes to get only a subset to sense the environment at any one time. Sensor nodes that are not sensing the environment are in a low-power sleep state, thus conserving energy. Furthermore, VSS balances the energy consumption amongst nodes by using a round robin method
    corecore