418 research outputs found

    Classical and Quantum Interaction of the Dipole

    Get PDF
    A unified and fully relativistic treatment of the interaction of the electric and magnetic dipole moments of a particle with the electromagnetic field is given. New forces on the particle due to the combined effect of electric and magnetic dipoles are obtained. Four new experiments are proposed, three of which would observe topological phase shifts.Comment: 10 pages, Latex/Revtex. Some minor errors have been correcte

    Topology, Locality, and Aharonov-Bohm Effect with Neutrons

    Get PDF
    Recent neutron interferometry experiments have been interpreted as demonstrating a new topological phenomenon similar in principle to the usual Aharonov-Bohm (AB) effect, but with the neutron's magnetic moment replacing the electron's charge. We show that the new phenomenon, called Scalar AB (SAB) effect, follows from an ordinary local interaction, contrary to the usual AB effect, and we argue that the SAB effect is not a topological effect by any useful definition. We find that SAB actually measures an apparently novel spin autocorrelation whose operator equations of motion contain the local torque in the magnetic field. We note that the same remarks apply to the Aharonov-Casher effect.Comment: 9 page

    Geometric Phase and Modulo Relations for Probability Amplitudes as Functions on Complex Parameter Spaces

    Full text link
    We investigate general differential relations connecting the respective behavior s of the phase and modulo of probability amplitudes of the form \amp{\psi_f}{\psi}, where ψf\ket{\psi_f} is a fixed state in Hilbert space and ψ\ket{\psi} is a section of a holomorphic line bundle over some complex parameter space. Amplitude functions on such bundles, while not strictly holomorphic, nevertheless satisfy generalized Cauchy-Riemann conditions involving the U(1) Berry-Simon connection on the parameter space. These conditions entail invertible relations between the gradients of the phase and modulo, therefore allowing for the reconstruction of the phase from the modulo (or vice-versa) and other conditions on the behavior of either polar component of the amplitude. As a special case, we consider amplitude functions valued on the space of pure states, the ray space R=CPn{\cal R} = {\mathbb C}P^n, where transition probabilities have a geometric interpretation in terms of geodesic distances as measured with the Fubini-Study metric. In conjunction with the generalized Cauchy-Riemann conditions, this geodesic interpretation leads to additional relations, in particular a novel connection between the modulus of the amplitude and the phase gradient, somewhat reminiscent of the WKB formula. Finally, a connection with geometric phases is established.Comment: 11 pages, 1 figure, revtex

    Quantum indistinguishability from general representations of SU(2n)

    Full text link
    A treatment of the spin-statistics relation in nonrelativistic quantum mechanics due to Berry and Robbins [Proc. R. Soc. Lond. A (1997) 453, 1771-1790] is generalised within a group-theoretical framework. The construction of Berry and Robbins is re-formulated in terms of certain locally flat vector bundles over n-particle configuration space. It is shown how families of such bundles can be constructed from irreducible representations of the group SU(2n). The construction of Berry and Robbins, which leads to a definite connection between spin and statistics (the physically correct connection), is shown to correspond to the completely symmetric representations. The spin-statistics connection is typically broken for general SU(2n) representations, which may admit, for a given value of spin, both bose and fermi statistics, as well as parastatistics. The determination of the allowed values of the spin and statistics reduces to the decomposition of certain zero-weight representations of a (generalised) Weyl group of SU(2n). A formula for this decomposition is obtained using the Littlewood-Richardson theorem for the decomposition of representations of U(m+n) into representations of U(m)*U(n).Comment: 32 pages, added example section 4.

    Relation between geometric phases of entangled bi-partite systems and their subsystems

    Full text link
    This paper focuses on the geometric phase of entangled states of bi-partite systems under bi-local unitary evolution. We investigate the relation between the geometric phase of the system and those of the subsystems. It is shown that (1) the geometric phase of cyclic entangled states with non-degenerate eigenvalues can always be decomposed into a sum of weighted non-modular pure state phases pertaining to the separable components of the Schmidt decomposition, though the same cannot be said in the non-cyclic case, and (2) the geometric phase of the mixed state of one subsystem is generally different from that of the entangled state even by keeping the other subsystem fixed, but the two phases are the same when the evolution operator satisfies conditions where each component in the Schmidt decomposition is parallel transported

    General relativistic Sagnac formula revised

    Full text link
    The Sagnac effect is a time or phase shift observed between two beams of light traveling in opposite directions in a rotating interferometer. We show that the standard description of this effect within the framework of general relativity misses the effect of deflection of light due to rotational inertial forces. We derive the necessary modification and demonstrate it through a detailed analysis of the square Sagnac interferometer rotating about its symmetry axis in Minkowski space-time. The role of the time shift in a Sagnac interferometer in the synchronization procedure of remote clocks as well as its analogy with the Aharanov-Bohm effect are revised.Comment: 11 pages, 3 figure

    In vivo effects of traditional ayurvedic formulations in Drosophila melanogaster model relate with therapeutic applications

    Get PDF
    Background: Ayurveda represents the traditional medicine system of India. Since mechanistic details of therapy in terms of current biology are not available in Ayurvedic literature, modern scientific studies are necessary to understand its major concepts and procedures. It is necessary to examine effects of the whole Ayurvedic formulations rather than their “active” components as is done in most current studies. Methods: We tested two different categories of formulations, a Rasayana (Amalaki Rasayana or AR, an herbal derivative) and a Bhasma (Rasa-Sindoor or RS, an organo-metallic derivative of mercury), for effects on longevity, development, fecundity, stress-tolerance, and heterogeneous nuclear ribonucleoprotein (hnRNP) levels of Drosophila melanogaster using at least 200 larvae or flies for each assay. Results: A 0.5% (weight/volume) supplement of AR or RS affected life-history and other physiological traits in distinct ways. While the size of salivary glands, hnRNP levels in larval tissues, and thermotolerance of larvae/adult flies improved significantly following feeding either of the two formulations, the median life span and starvation resistance improved only with AR. Feeding on AR or RS supplemented food improved fecundity differently. Feeding of larvae and adults with AR increased the fecundity while the same with RS had opposite effect. On the contrary, feeding larvae on normal food and adults on AR supplement had no effect on fecundity but a comparable regime of feeding on RS-supplemented food improved fecundity. RS feeding did not cause heavy metal toxicity. Conclusions: The present study with two Ayurvedic formulations reveals formulation-specific effects on several parameters of the fly's life, which seem to generally agree with their recommended human usages in Ayurvedic practices. Thus, Drosophila, with its very rich genetic tools and well-worked-out developmental pathways promises to be a very good model for examining the cellular and molecular bases of the effects of different Ayurvedic formulations

    Geometric Phases and Mielnik's Evolution Loops

    Full text link
    The cyclic evolutions and associated geometric phases induced by time-independent Hamiltonians are studied for the case when the evolution operator becomes the identity (those processes are called {\it evolution loops}). We make a detailed treatment of systems having equally-spaced energy levels. Special emphasis is made on the potentials which have the same spectrum as the harmonic oscillator potential (the generalized oscillator potentials) and on their recently found coherent states.Comment: 11 pages, harvmac, 2 figures available upon request; CINVESTAV-FIS GFMR 11/9

    Off-Diagonal Geometric Phases

    Get PDF
    We investigate the adiabatic evolution of a set of non-degenerate eigenstates of a parameterized Hamiltonian. Their relative phase change can be related to geometric measurable quantities that extend the familiar concept of Berry phase to the evolution of more than one state. We present several physical systems where these concepts can be applied, including an experiment on microwave cavities for which off-diagonal phases can be determined from published data.Comment: 5 pages 2 figures - RevTeX. Revised version including geometrical interpretatio

    Robustness of optimal working points for non-adiabatic holonomic quantum computation

    Full text link
    Geometric phases are an interesting resource for quantum computation, also in view of their robustness against decoherence effects. We study here the effects of the environment on a class of one-qubit holonomic gates that have been recently shown to be characterized by "optimal" working times. We numerically analyze the behavior of these optimal points and focus on their robustness against noise.Comment: 14 pages, 8 figure
    corecore