4 research outputs found

    Temperature-Dependent Raman Studies and Thermal Conductivity of Few-Layer MoS<sub>2</sub>

    No full text
    We report on the temperature dependence of in-plane E<sub>2g</sub> and out-of-plane A<sub>1g</sub> Raman modes in high-quality few-layer MoS<sub>2</sub> (FLMS) prepared using a high-temperature vapor-phase method. The materials obtained were investigated using transmission electron microscopy. The frequencies of these two phonon modes were found to vary linearly with temperature. The first-order temperature coefficients for E<sup>1</sup><sub>2g</sub> and A<sub>1g</sub> modes were found to be (1.32 and 1.23) Ɨ 10<sup>ā€“2</sup> cm<sup>ā€“1</sup>/K, respectively. The thermal conductivity of the suspended FLMS at room temperature was estimated to be āˆ¼52 W/mK

    Hierarchical FeNiP@Ultrathin Carbon Nanoflakes as Alkaline Oxygen Evolution and Acidic Hydrogen Evolution Catalyst for Efficient Water Electrolysis and Organic Decomposition

    No full text
    Efficiency of hydrogen evolution via water electrolysis is mainly impeded by the kinetically sluggish oxygen evolution reaction (OER). Thus, it is of great significance to develop highly active and stable OER catalyst for alkaline water electrolysis or to substitute the more kinetically demanding acidic OER with a facile electron-donating reaction such that OER is no longer the bottleneck half-reaction for either acidic or alkaline water electrolysis. Herein, the hierarchical Feā€“Ni phosphide shelled with ultrathin carbon networks on Ni foam (FeNiP@C) is reported and shows exceptional OER activity and enhanced chemical stability in 1 M KOH. This unique electrode provides large active sites, facile electron transport pathways, and rapid gas release, resulting in a remarkable OER activity that delivers a current density of 100 mA/cm<sup>2</sup> at an overpotential of 182 mV with a Tafel slope of 56 mV/dec. Combining the hydrogen evolution reaction with organic pollutant (methylene blue) oxidation, a multifunctional electrolyzer for simultaneous cost-effective hydrogen generation and organic pollutant decomposition in acid wastewater is proposed. Our strategies in this work provide attractive opportunities in energy- and environment-related fields

    Hierarchical FeNiP@Ultrathin Carbon Nanoflakes as Alkaline Oxygen Evolution and Acidic Hydrogen Evolution Catalyst for Efficient Water Electrolysis and Organic Decomposition

    No full text
    Efficiency of hydrogen evolution via water electrolysis is mainly impeded by the kinetically sluggish oxygen evolution reaction (OER). Thus, it is of great significance to develop highly active and stable OER catalyst for alkaline water electrolysis or to substitute the more kinetically demanding acidic OER with a facile electron-donating reaction such that OER is no longer the bottleneck half-reaction for either acidic or alkaline water electrolysis. Herein, the hierarchical Feā€“Ni phosphide shelled with ultrathin carbon networks on Ni foam (FeNiP@C) is reported and shows exceptional OER activity and enhanced chemical stability in 1 M KOH. This unique electrode provides large active sites, facile electron transport pathways, and rapid gas release, resulting in a remarkable OER activity that delivers a current density of 100 mA/cm<sup>2</sup> at an overpotential of 182 mV with a Tafel slope of 56 mV/dec. Combining the hydrogen evolution reaction with organic pollutant (methylene blue) oxidation, a multifunctional electrolyzer for simultaneous cost-effective hydrogen generation and organic pollutant decomposition in acid wastewater is proposed. Our strategies in this work provide attractive opportunities in energy- and environment-related fields

    Spin-Polarized Tunneling through Chemical Vapor Deposited Multilayer Molybdenum Disulfide

    Get PDF
    The two-dimensional (2D) semiconductor molybdenum disulfide (MoS<sub>2</sub>) has attracted widespread attention for its extraordinary electrical-, optical-, spin-, and valley-related properties. Here, we report on spin-polarized tunneling through chemical vapor deposited multilayer MoS<sub>2</sub> (āˆ¼7 nm) at room temperature in a vertically fabricated spin-valve device. A tunnel magnetoresistance (TMR) of 0.5ā€“2% has been observed, corresponding to spin polarization of 5ā€“10% in the measured temperature range of 300ā€“75 K. First-principles calculations for ideal junctions result in a TMR up to 8% and a spin polarization of 26%. The detailed measurements at different temperature, bias voltages, and density functional theory calculations provide information about spin transport mechanisms in vertical multilayer MoS<sub>2</sub> spin-valve devices. These findings form a platform for exploring spin functionalities in 2D semiconductors and understanding the basic phenomena that control their performance
    corecore