12 research outputs found
Mechanistic insights of Cucumis melo L. seeds for gastrointestinal muscle spasms through calcium signaling pathway–related gene regulation networks in WGCNA and in vitro, in vivo studies
Background: In addition to the nutritional benefits of Cucumis melo L., herbalists in Pakistan and India employ
seeds to treat various ailments. This study aimed to determine the regulatory role of C. melo seeds in calciummediated
smooth muscle contraction.
Methods: We identified and quantified the phytochemicals of C. melo with LC ESI–MS/MS and HPLC, then
conducted in vitro and in vivo tests to confirm the involvement in smooth muscle relaxation. Then, diarrheapredominant
irritable bowel syndrome gene datasets from NCBI GEO were acquired, DEGs and WGCNA followed
by functional enrichment analysis. Next, molecular docking of key genes was performed.
Results: The quantification of C. melo seeds revealed concentrations of rutin, kaempferol, and quercetin were
702.38 μg/g, 686.29 μg/g, and 658.41 μg/g, respectively. In vitro experiments revealed that C. melo seeds had a
dose-dependent relaxant effect for potassium chloride (80 mM)–induced spastic contraction and exhibited calcium
antagonistic response in calcium dose-response curves. In in vivo studies, Cm.EtOH exhibited antidiarrheal,
antiperistaltic, and antisecretory effects. The functional enrichment of WGCNA and DEGs IBS-associated pathogenic
genes, including those involved in calcium-mediated signaling, MAPK cascade, and inflammatory responses.
MAPK1 and PIK3CG were identified as key genes with greater binding affinity with rutin, quercitrin, and
kaempferol in molecular docking.
Conclusions: The bronchodilator and antidiarrheal effects of C. melo were produced by altering the regulatory
genes of calcium-mediated smooth contractionUniversidade de Vigo/CISU
Recommended from our members
Molecular characteristics of plant UDP-arabinopyranose mutases
l-arabinofuranose is a ubiquitous component of the cell wall and various natural products in plants, where it is synthesized from cytosolic UDP-arabinopyranose (UDP-Arap). The biosynthetic machinery long remained enigmatic in terms of responsible enzymes and subcellular localization. With the discovery of UDP-Arap mutase in plant cytosol, the demonstration of its role in cell-wall arabinose incorporation and the identification of UDP-arabinofuranose transporters in the Golgi membrane, it is clear that the cytosolic UDP-Arap mutases are the key enzymes converting UDP-Arap to UDP-arabinofuranose for cell wall and natural product biosynthesis. This has recently been confirmed by several genotype/phenotype studies. In contrast to the solid evidence pertaining to UDP-Arap mutase function in vivo, the molecular features, including enzymatic mechanism and oligomeric state, remain unknown. However, these enzymes belong to the small family of proteins originally identified as reversibly glycosylated polypeptides (RGPs), which has been studied for >20Â years. Here, we review the UDP-Arap mutase and RGP literature together, to summarize and systemize reported molecular characteristics and relations to other proteins
Spinal meningiomas: Management and outcomes
Spinal meningiomas are relatively rare, benign, intradural, extramedullary tumours, that are typically slow-growing and well-defined. Surgery is always the first line for treating spinal meningiomas. Here, we have discussed the existing literature on spinal meningiomas and the role of surgery in determining the outcomes
Spinal meningiomas: Management and outcomes
Spinal meningiomas are relatively rare, benign, intradural, extramedullary tumours, that are typically slow-growing and well-defined. Surgery is always the first line for treating spinal meningiomas. Here, we have discussed the existing literature on spinal meningiomas and the role of surgery in determining the outcome
Possible Mechanisms Underlying the Antispasmodic, Bronchodilator, and Antidiarrheal Activities of Polarity–Based Extracts of <i>Cucumis sativus</i> L. Seeds in In Silico, In Vitro, and In Vivo Studies
Apart from the nutritional value, Cucumis sativus L. has also been used in the traditional medicine of Iran, Pakistan, and India. Its seeds are used by herbalists to treat gastrointestinal, respiratory, and urinary problems. However, more investigations are required to explain its mechanisms for treating GI, respiratory, and urinary diseases. Accordingly, the aim of the present work was to investigate the antispasmodic, bronchodilator, and antidiarrheal activities of C. sativus seeds extracts and the underlying mechanisms of action. For this purpose, sequential extracts of C. sativus seeds were prepared in n-hexane, dichloromethane, ethanol, and water. Bioactive compounds in C. sativus seed extracts were identified and quantified by utilizing LC ESI–MS/MS and HPLC. Moreover, network pharmacology and molecular docking were employed to examine the antispasmodic and bronchodilator effects of the bioactive substances in the extracts. In vitro and in vivo experiments were also conducted to validate the mechanistic insights gained from the in silico analysis. Results indicated the presence of kaempferol with a concentration of 813.74 µg/g (highest concentration) in the seed extract of C. sativus, followed by quercetin (713.83 µg/g), narcissin (681.87 µg/g), and orientin (676.19 µg/g). In silico investigations demonstrated that the bioactive chemicals in C. sativus seeds inhibited the expression of the target genes involved in smooth muscle contraction and calcium-mediated signaling. Sequential seed extracts of C. sativus caused a dose-dependent relaxant response for spasmolytic reaction and resulted in a relaxation of K+ (80 mM) spastic contraction. In animal models, C. sativus seed extracts exhibited partial or complete antiperistalsis, antidiarrheal, and antisecretory actions. By modulating the contractile response through calcium-mediated signaling target proteins, C. sativus seeds generated bronchodilator, antispasmodic, and antidiarrheal therapeutic effects
Random mutagenesis of super Koji (Aspergillus oryzae): improvement in production and thermal stability of α-amylases for maltose syrup production
Abstract Background Alpha-amylases hydrolyze 1,4 α-glycosidic bonds of starch and produce malto-oligosaccharides. It is an important enzyme generally applied in textile, food and brewing industries. Enhancement in thermal stability and productivity of enzymes are the two most sought after properties for industrial use. The Aspergillus oryzae (Koji) has Generally Recognized as Safe (GRAS) status and safe for use in food industry. Hence, Koji strain’s development for the screening of potent mutants, hyper producer of thermostable α-amylases, with desired attributes is the need of the time. Results A process has been developed to improve super Koji (A. oryzae cmc1) strain through γ-rays treatment. The doses i.e. 0.60, 0.80, 1.00, 1.20 & 1.40 KGy gave more than 3.0 log kill. Initially, 52 Koji mutants resistant to 1% (w/v) Triton X-100 were selected. 2nd screening was based on α-amylases hyper production and 23 mutants were sorted out by measuring clearing zones index (CI). Afterwards nine potent mutants, resistant to 2-deoxy D-glucose, were screened based on CI. These were further analyzed for thermal stability and productivity of α-amylase under submerged conditions. The mutants’ M-80(10), M-100(6) & M-120(5) gave about four fold increases in α-amylases productivity. The half life of M-100(6) α-amylase at 55 °C was 52 min and was highest among the mutants. Liquid Chromatography-Mass Spectrometry (LC-MS) analysis confirmed that mutants did not produce aflatoxins. Field Emission Scanning Electron Microscopy (FESEM) of Koji mycelia depicted that exposure to gamma rays increased rigidity of the mycelium. The potent Koji mutant M-100(6) was grown on soluble starch in 10L fermenter and produced 40.0 IU ml-1 of α-amylases with specific activity of 2461 IU mg-1 protein. Growth kinetic parameters were: μ = Specific growth rate= 0.069 h-1, td = Biomass doubling time= 10.0 h, Y p/x = Product yield coefficient with respect to cell mass = 482 U g-1; q p= Specific rate of product formation= 33.29 U g-1 h-1. Conclusion It was concluded that the developed five step screening process has great potential to generate potent mutants for the hyper production of thermostable enzymes through γ-rays mediated physical mutagenesis. The developed thermostable α-amylases of super Koji mutantM-100(6) has immense potential for application in saccharification process for maltose syrup production. Moreover, the developed five step strain’s development process may be used for the simultaneous improvement in productivity and thermal stability of other microbial enzymes
Integrated Mechanisms of Polarity–Based Extracts of Cucumis melo L. Seed Kernels for Airway Smooth Muscle Relaxation via Key Signaling Pathways Based on WGCNA, In Vivo, and In Vitro Analyses
The present study aimed to determine the mechanisms responsible for calcium–mediated smooth muscle contractions in C. melo seeds. The phytochemicals of C. melo were identified and quantified with the aid of Liquid Chromatography Electrospray Ionization Tandem Mass Spectrometric (LC/ESI–MS/MS) and high–performance liquid chromatography (HPLC), and then tested in–vitro and in vivo to confirm involvement in smooth muscle relaxation. Allergic asthma gene datasets were acquired from the NCBI gene expression omnibus (GEO) and differentially expressed gene (DEG) analysis, weighted gene co–expression network analysis (WGCNA), and functional enrichment analysis were conducted. Additionally, molecular docking of key genes was carried out. Kaempferol, rutin, and quercetin are identified as phytochemical constituents of C. melo seeds. Results indicated that C. melo seeds exhibit a dose–dependent relaxant effect for potassium chloride (80 mM)– induced spastic contraction and calcium antagonistic response in calcium dose–response curves. The functional enrichment of WGCNA and DEG asthma–associated pathogenic genes showed cytokine–mediated pathways and inflammatory responses. Furthermore, CACNA1A, IL2RB, and NOS2 were identified as key genes with greater binding affinity with rutin, quercitrin, and kaempferol in molecular docking. These results show that the bronchodilator and antidiarrheal effects of C. melo were produced by altering the regulatory genes of calcium–mediated smooth muscle contraction
Case Report: Biallelic Variant in the tRNA Methyltransferase Domain of the AlkB Homolog 8 Causes Syndromic Intellectual Disability
Intellectual disability (ID) has become very common and is an extremely heterogeneous disorder, where the patients face many challenges with deficits in intellectual functioning and adaptive behaviors. A single affected family revealed severe disease phenotypes such as ID, developmental delay, dysmorphic facial features, postaxial polydactyly type B, and speech impairment. DNA of a single affected individual was directly subjected to whole exome sequencing (WES), followed by Sanger sequencing. Data analysis revealed a novel biallelic missense variant (c.1511G>C; p.(Trp504Ser)) in the ALKBH8 gene, which plays a significant role in tRNA modifications. Our finding adds another variant to the growing list of ALKBH8-associated tRNA modifications causing ID and additional phenotypic manifestations. The present study depicts the key role of the genes associated with tRNA modifications, such as ALKBH8, in the development and pathophysiology of the human brain
Glycated hemoglobin (HbA1c) as diagnostic criteria for diabetes: the optimal cut-off points values for the Pakistani population; a study from second National Diabetes Survey of Pakistan (NDSP) 2016–2017
Aim Glycated hemoglobin (HbA1c) cut-off values as diagnostic tool in diabetes and prediabetes with its concordance to oral glucose tolerance test (OGTT) in Pakistani population.Methodology Data for this substudy was obtained from second National Diabetes Survey of Pakistan (NDSP) 2016–2017. With this survey, 10 834 individuals were recruited and after excluding known subjects with diabetes, 6836 participants fulfilled inclusion criteria for this study. Demographic, anthropometric and biochemical parameters were obtained. OGTT was used as standard diagnostic tool to screen population and HbA1c for optimal cut-off values. Participants were categorized into normal glucose tolerance (NGT), newly diagnosed diabetes (NDD) and prediabetes.Results Out of 6836 participants, 4690 (68.6%) had NGT, 1333 (19.5%) had prediabetes and 813 (11.9%) had NDD by OGTT criteria with median (IQR) age of 40 (31–50) years. Optimal HbA1c cut-off point for identification of diabetes and prediabetes was observed as 5.7% ((AUC (95% CI)=0.776 (0.757 to 0.795), p<0.0001)) and 5.1% ((AUC (95% CI)=0.607 (0.590 to 0.624), p<0.0001)), respectively. However, out of 68.6% NGT subjects identified through OGTT, 24.1% and 9.3% participants were found to have prediabetes and NDD, respectively by using HbA1c criteria. By using both OGTT and HbA1c criteria, only 7.9% and 7.3% were observed as prediabetes and diabetes, respectively.Conclusion Findings from second NDSP demonstrated disagreement between findings of OGTT and HbA1c as diagnostic tool for Pakistani population. As compared with international guidelines, HbA1c threshold for prediabetes and NDD were lower in this part of world. HbA1c as diagnostic tool might require ethnic or regional-based modification in cut-off points, validated by relevant community-based epidemiological surveys