237 research outputs found
STM imaging of impurity resonances on BiSe
In this paper we present detailed study of the density of states near defects
in BiSe. In particular, we present data on the commonly found
triangular defects in this system. While we do not find any measurable
quasiparticle scattering interference effects, we do find localized resonances,
which can be well fitted by theory once the potential is taken to be extended
to properly account for the observed defects. The data together with the fits
confirm that while the local density of states around the Dirac point of the
electronic spectrum at the surface is significantly disrupted near the impurity
by the creation of low-energy resonance state, the Dirac point is not locally
destroyed. We discuss our results in terms of the expected protected surface
state of topological insulators.Comment: 5 pages, 6 figure
STM imaging of a bound state along a step on the surface of the topological insulator BiTe
Detailed study of the LDOS associated with the surface-state-band near a
step-edge of the strong topological-insulator Bi2Te3, reveal a one-dimensional
bound state that runs parallel to the stepedge and is bound to it at some
characteristic distance. This bound state is clearly observed in the bulk gap
region, while it becomes entangled with the oscillations of the warped surface
band at high energy, and with the valence band states near the Dirac point.
Using the full effective Hamiltonian proposed by Zhang et al., we obtain a
closed formula for this bound state that fits the data and provide further
insight into the general topological properties of the electronic structure of
the surface band near strong structural defects.Comment: 5 pages, 4 figure
Evidence for nodal superconductivity in LaFePO
In several iron-arsenide superconductors there is strong evidence for a fully
gapped superconducting state consistent with either a conventional s-wave
symmetry or an unusual state where there the gap changes sign between
the electron and hole Fermi surface sheets. Here we report measurements of the
penetration depth in very clean samples of the related
iron-phosphide superconductor, LaFePO, at temperatures down to 100 mK.
We find that varies almost perfectly linearly with strongly
suggesting the presence of gap nodes in this compound. Taken together with
other data, this suggests the gap function may not be generic to all pnictide
superconductors
Charge dynamics of the Co-doped BaFeAs
We report on a thorough optical investigation over a broad spectral range and
as a function of temperature of the charge dynamics in
Ba(CoFe)As compounds for Co-doping ranging between 0 and
18%. For the parent compound as well as for =0.025 we observe the opening of
a pseudogap, due to the spin-density-wave phase transition and inducing a
reshuffling of spectral weight from low to high frequencies. For compounds with
0.051 0.11 we detect the superconducting gap, while at =0.18 the
material stays metallic at all temperatures. We describe the effective metallic
contribution to the optical conductivity with two Drude terms, representing the
combination of a coherent and incoherent component, and extract the respective
scattering rates. We establish that the transport properties in the normal
phase are dominated by the coherent Drude term for 00.051 and by the
incoherent one for 0.0610.18, respectively. Finally through spectral
weight arguments, we give clear-cut evidence for moderate electronic
correlations for 00.061, which then crossover to values appropriate
for a regime of weak interacting and nearly-free electron metals for
0.11
Impact of disorder on dynamics and ordering in the honeycomb-lattice iridate Na2IrO3
Kitaev's honeycomb spin-liquid model and its proposed realization in materials such as α-RuCl3, Li2IrO3, and Na2IrO3 continue to present open questions about how the dynamics of a spin liquid are modified in the presence of non-Kitaev interactions as well as the presence of inhomogeneities. Here we use Na23 nuclear magnetic resonance to probe both static and dynamical magnetic properties in single-crystal Na2IrO3. We find that the NMR shift follows the bulk susceptibility above 30 K but deviates from it below; moreover below TN the spectra show a broad distribution of internal magnetic fields. Both of these results provide evidence for inequivalent magnetic sites at low temperature, suggesting inhomogeneities are important for the magnetism. The spin-lattice relaxation rate is isotropic and diverges at TN, suggesting that the Kitaev cubic axes may control the critical quantum spin fluctuations. In the ordered state, we observe gapless excitations, which may arise from site substitution, emergent defects from milder disorder, or possibly be associated with nearby quantum paramagnetic states distinct from the Kitaev spin liquid
High-temperature magnetic anomaly in the Kitaev hyperhoneycomb compound β-Li2IrO3
We report the existence of a high-temperature magnetic anomaly in the three-dimensional Kitaev candidate material, β-Li2IrO3. Signatures of the anomaly appear in magnetization, heat capacity, and muon spin relaxation measurements. The onset coincides with a reordering of the principal axes of magnetization, which is thought to be connected to the onset of Kitaev-like correlations in the system. The anomaly also shows magnetic hysteresis with a spatially anisotropic magnitude that follows the spin-anisotropic exchange anisotropy of the underlying Kitaev Hamiltonian. We discuss possible scenarios for a bulk and impurity origin
Recommended from our members
Exchange biased anomalous Hall effect driven by frustration in a magnetic kagome lattice.
Co[Formula: see text]Sn[Formula: see text]S[Formula: see text] is a ferromagnetic Weyl semimetal that has been the subject of intense scientific interest due to its large anomalous Hall effect. We show that the coupling of this material's topological properties to its magnetic texture leads to a strongly exchange biased anomalous Hall effect. We argue that this is likely caused by the coexistence of ferromagnetism and geometric frustration intrinsic to the kagome network of magnetic ions, giving rise to spin-glass behavior and an exchange bias
Dissipation in the superconducting state of kappa-(BEDT-TTF)2Cu(NCS)2
We have studied the interlayer resistivity of the prototypical
quasi-two-dimensional organic superconductor -(BEDT-TTF)Cu(NCS)
as a function of temperature, current and magnetic field, within the
superconducting state. We find a region of non-zero resistivity whose
properties are strongly dependent on magnetic field and current density. There
is a crossover to non-Ohmic conduction below a temperature that coincides with
the 2D vortex solid -- vortex liquid transition. We interpret the behaviour in
terms of a model of current- and thermally-driven phase slips caused by the
diffusive motion of the pancake vortices which are weakly-coupled in adjacent
layers, giving rise to a finite interlayer resistance.Comment: Four pages, three figure
On the origin of non-monotonic doping dependence of the in-plane resistivity anisotropy in Ba(Fe)As, = Co, Ni and Cu
The in-plane resistivity anisotropy has been measured for detwinned single
crystals of Ba(FeNi)As and Ba(FeCu)As.
The data reveal a non-monotonic doping dependence, similar to previous
observations for Ba(FeCo)As. Magnetotransport measurements
of the parent compound reveal a non-linear Hall coefficient and a strong linear
term in the transverse magnetoresistance. Both effects are rapidly suppressed
with chemical substitution over a similar compositional range as the onset of
the large in-plane resistivity anisotropy. It is suggested that the relatively
small in-plane anisotropy of the parent compound in the spin density wave state
is due to the presence of an isotropic, high mobility pocket of reconstructed
Fermi surface. Progressive suppression of the contribution to the conductivity
arising from this isotropic pocket with chemical substitution eventually
reveals the underlying in-plane anisotropy associated with the remaining FS
pockets.Comment: 12 pages, 9 figure
- …