16 research outputs found

    Palliative and corrective surgery in low-weight infants is associated with an increased mortality risk: How can we do better?

    Get PDF

    Abnormal mitochondrial respiration in skeletal muscle in patients with peripheral arterial disease

    Get PDF
    AbstractObjectiveDiscrete morphologic, enzymatic and functional changes in skeletal muscle mitochondria have been demonstrated in patients with peripheral arterial disease (PAD). We examined mitochondrial respiration in the gastrocnemius muscle of nine patients (10 legs) with advanced PAD and in nine control patients (nine legs) without evidence of PAD.MethodsMitochondrial respiratory rates were determined with a Clark electrode in an oxygraph cell containing saponin-skinned muscle bundles. Muscle samples were obtained from the anteromedial aspect of the gastrocnemius muscle, at a level 10 cm distal to the tibial tuberosity. Mitochondria respiratory rate, calculated as nanoatoms of oxygen consumed per minute per milligram of noncollagen protein, were measured at baseline (V0), after addition of substrates (malate and glutamate; (VSUB), after addition of adenosine diphosphate (ADP) (VADP), and finally, after adenine nucleotide translocase inhibition with atractyloside (VAT). The acceptor control ratio, a sensitive indicator of overall mitochondrial function, was calculated as the ratio of the respiratory rate after the addition of ADP to the respiratory rate after adenine nucleotide translocase inhibition with atractyloside (VADP/ VAT).ResultsRespiratory rate in muscle mitochondria from patients with PAD were not significantly different from control values at baseline (0.31 ± 0.06 vs 0.55 ± 0.12; P = .09), but Vsub was significantly lower in patients with PAD compared with control subjects (0.43 ± 0.07 vs 0.89 ± 0.20; P < .05), as was VADP (0.69 ± 0.13 vs 1.24 ± 0.20; P < .05). Respiratory rates after atractyloside inhibition in patients with PAD were no different from those in control patients (0.47 ± 0.07 vs 0.45 ± P = .08). Compared with control values, mitochondria from patients with PAD had a significantly lower acceptor control ratio (1.41 ± 0.10 vs 2.90 ± 0.20; P < .001).ConclusionMitochondrial respiratory activity is abnormal in lower extremity skeletal muscle in patients with PAD. When considered in concert with the ultrastructural and enzymatic abnormalities previously documented in mitochondria of chronically ischemic muscle, these data support the concept of defective mitochondrial function as a pathophysiologic component of PAD

    Microbial and Physicochemical Status of Raw and Processed Sea Cucumbers from the Hellenic Seawaters

    No full text
    The aquatic environment is a reservoir of many species that have not yet been exploited at a global level and have not been extensively investigated. The aim of the present work was to study the microbial populations, the bacterial communities and physicochemical parameters (pH, water activity, humidity, salinity) in raw, frozen, boiled, dehydrated and salted final products of two sea cucumber species (Holothuria polii and Holothuria tubulosa) originating from the Hellenic seawaters. The results indicated that all products were found at acceptable levels from a microbiological point of view. The metabarcoding analysis of the 16S rRNA gene revealed the existence of several different bacterial groups, the presence and abundance of which were mainly dependent on product type, even though some moderate differences in the microbiota profile between the two sea cucumber species were also detected in some of the products. Overall, the present work deals with an underexplored aquatic product and provides novel and useful information for the aquatic food industry, consumers and other stakeholders, increasing, in parallel, the need for further scientific attention in the near future. Our findings could be exploited as a baseline to highlight a promising aquatic food product provided to the international market

    A Humanized Mouse Model Generated Using Surplus Neonatal Tissue

    No full text
    Summary: Here, we describe the NeoThy humanized mouse model created using non-fetal human tissue sources, cryopreserved neonatal thymus and umbilical cord blood hematopoietic stem cells (HSCs). Conventional humanized mouse models are made by engrafting human fetal thymus and HSCs into immunocompromised mice. These mice harbor functional human T cells that have matured in the presence of human self-peptides and human leukocyte antigen molecules. Neonatal thymus tissue is more abundant and developmentally mature and allows for creation of up to ∼50-fold more mice per donor compared with fetal tissue models. The NeoThy has equivalent frequencies of engrafted human immune cells compared with fetal tissue humanized mice and exhibits T cell function in assays of ex vivo cell proliferation, interferon γ secretion, and in vivo graft infiltration. The NeoThy model may provide significant advantages for induced pluripotent stem cell immunogenicity studies, while bypassing the requirement for fetal tissue. : Corresponding author William Burlingham and colleagues created a humanized mouse model called the NeoThy. The NeoThy uses human neonatal, rather than fetal, tissue sources for generating a human immune system within immunocompromised mouse hosts. NeoThy mice are an attractive alternative to conventional humanized mouse models, as they enable robust and reproducible iPSC immunogenicity experiments in vivo. Keywords: NeoThy, humanized mouse, iPSC, PSC, immunogenicity, transplantation, immunology, hematopoietic stem cells, induced pluripotent stem cells, thymu
    corecore