211 research outputs found

    Validation of electrodeposited 241Am alpha-particle sources for use in liquified gas detectors at cryogenic temperatures

    Full text link
    This paper describes a procedure for the validation of alpha-particle sources (exempt unsealed sources) to be used in experimental setups with liquefied gases at cryogenic temperatures (down to -196 C) and high vacuum. These setups are of interest for the development and characterization of neutrino and dark matter detectors based on liquid argon, among others. Due to the high purity requirements, the sources have to withstand high vacuum and cryogenic temperatures for extended periods. The validation procedure has been applied to 241Am sources produced by electrodeposition.Comment: 5 page

    Convolutional Neural Networks Applied to Neutrino Events in a Liquid Argon Time Projection Chamber

    Full text link
    We present several studies of convolutional neural networks applied to data coming from the MicroBooNE detector, a liquid argon time projection chamber (LArTPC). The algorithms studied include the classification of single particle images, the localization of single particle and neutrino interactions in an image, and the detection of a simulated neutrino event overlaid with cosmic ray backgrounds taken from real detector data. These studies demonstrate the potential of convolutional neural networks for particle identification or event detection on simulated neutrino interactions. We also address technical issues that arise when applying this technique to data from a large LArTPC at or near ground level

    The present and future status of heavy neutral leptons

    Get PDF
    The existence of nonzero neutrino masses points to the likely existence of multiple Standard Model neutral fermions. When such states are heavy enough that they cannot be produced in oscillations, they are referred to as heavy neutral leptons (HNLs). In this white paper, we discuss the present experimental status of HNLs including colliders, beta decay, accelerators, as well as astrophysical and cosmological impacts. We discuss the importance of continuing to search for HNLs, and its potential impact on our understanding of key fundamental questions, and additionally we outline the future prospects for next-generation future experiments or upcoming accelerator run scenarios
    corecore