9 research outputs found

    Studies in the mouse model identify strain variability as a major determinant of disease outcome in Leishmania infantum infection

    Get PDF
    Visceral leishmaniasis is a severe and potentially fatal disease caused by protozoa of the genus Leishmania, transmitted by phlebotomine sandflies. In Europe and the Mediterranean region, L. infantum is the commonest agent of visceral leishmaniasis, causing a wide spectrum of clinical manifestations, including asymptomatic carriage, cutaneous lesions and severe visceral disease. Visceral leishmaniasis is more frequent in immunocompromised individuals and data obtained in experimental models of infection have highlighted the importance of the host immune response, namely the efficient activation of host's macrophages, in determining infection outcome. Conversely, few studies have addressed a possible contribution of parasite variability to this outcome.No funders or funding refered in the paper

    Modulation of Iron Metabolism in Response to Infection: Twists for All Tastes

    No full text
    Iron is an essential nutrient for almost all living organisms, but is not easily made available. Hosts and pathogens engage in a fight for the metal during an infection, leading to major alterations in the host’s iron metabolism. Important pathological consequences can emerge from the mentioned interaction, including anemia. Several recent reports have highlighted the alterations in iron metabolism caused by different types of infection, and several possible therapeutic strategies emerge, based on the targeting of the host’s iron metabolism. Here, we review the most recent literature on iron metabolism alterations that are induced by infection, the consequent development of anemia, and the potential therapeutic approaches to modulate iron metabolism in order to correct iron-related pathologies and control the ongoing infection

    Ferritin: An Inflammatory Player Keeping Iron at the Core of Pathogen-Host Interactions

    No full text
    Iron is an essential element for virtually all cell types due to its role in energy metabolism, nucleic acid synthesis and cell proliferation. Nevertheless, if free, iron induces cellular and organ damage through the formation of free radicals. Thus, iron levels must be firmly controlled. During infection, both host and microbe need to access iron and avoid its toxicity. Alterations in serum and cellular iron have been reported as important markers of pathology. In this regard, ferritin, first discovered as an iron storage protein, has emerged as a biomarker not only in iron-related disorders but also in inflammatory diseases, or diseases in which inflammation has a central role such as cancer, neurodegeneration or infection. The basic research on ferritin identification and functions, as well as its role in diseases with an inflammatory component and its potential as a target in host-directed therapies, are the main considerations of this review

    New Perspectives on Circulating Ferritin: Its Role in Health and Disease

    No full text
    The diagnosis of iron disturbances usually includes the evaluation of serum parameters. Serum iron is assumed to be entirely bound to transferrin, and transferrin saturation—the ratio between the serum iron concentration and serum transferrin—usually reflects iron availability. Additionally, serum ferritin is commonly used as a surrogate of tissue iron levels. Low serum ferritin values are interpreted as a sign of iron deficiency, and high values are the main indicator of pathological iron overload. However, in situations of inflammation, serum ferritin levels may be very high, independently of tissue iron levels. This presents a particularly puzzling challenge for the clinician evaluating the overall iron status of the patient in the presence of an inflammatory condition. The increase in serum ferritin during inflammation is one of the enigmas regarding iron metabolism. Neither the origin, the mechanism of release, nor the effects of serum ferritin are known. The use of serum ferritin as a biomarker of disease has been rising, and it has become increasingly diverse, but whether or not it contributes to controlling the disease or host pathology, and how it would do it, are important, open questions. These will be discussed here, where we spotlight circulating ferritin and revise the recent clinical and preclinical data regarding its role in health and disease

    InfectionCMA: A Cell MicroArray Approach for Efficient Biomarker Screening in In Vitro Infection Assays

    No full text
    The recently emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has forced the scientific community to acquire knowledge in real-time, when total lockdowns and the interruption of flights severely limited access to reagents as the global pandemic became established. This unique reality made researchers aware of the importance of designing efficient in vitro set-ups to evaluate infectious kinetics. Here, we propose a histology-based method to evaluate infection kinetics grounded in cell microarray (CMA) construction, immunocytochemistry and in situ hybridization techniques. We demonstrate that the chip-like organization of the InfectionCMA has several advantages, allowing side-by-side comparisons between diverse cell lines, infection time points, and biomarker expression and cytolocalization evaluation in the same slide. In addition, this methodology has the potential to be easily adapted for drug screening

    H-Ferritin Produced by Myeloid Cells Is Released to the Circulation and Plays a Major Role in Liver Iron Distribution during Infection

    No full text
    During infections, the host redistributes iron in order to starve pathogens from this nutrient. Several proteins are involved in iron absorption, transport, and storage. Ferritin is the most important iron storage protein. It is composed of variable proportions of two peptides, the L- and H-ferritins (FTL and FTH). We previously showed that macrophages increase their expression of FTH1 when they are infected in vitro with Mycobacterium avium, without a significant increase in FTL. In this work, we investigated the role of macrophage FTH1 in M. avium infection in vivo. We found that mice deficient in FTH1 in myeloid cells are more resistant to M. avium infection, presenting lower bacterial loads and lower levels of proinflammatory cytokines than wild-type littermates, due to the lower levels of available iron in the tissues. Importantly, we also found that FTH1 produced by myeloid cells in response to infection may be found in circulation and that it plays a key role in iron redistribution. Specifically, in the absence of FTH1 in myeloid cells, increased expression of ferroportin is observed in liver granulomas and increased iron accumulation occurs in hepatocytes. These results highlight the importance of FTH1 expression in myeloid cells for iron redistribution during infection

    Iron Related Biomarkers Predict Disease Severity in a Cohort of Portuguese Adult Patients during COVID-19 Acute Infection

    Get PDF
    Large variability in COVID-19 clinical progression urges the need to find the most relevant biomarkers to predict patients’ outcomes. We evaluated iron metabolism and immune response in 303 patients admitted to the main hospital of the northern region of Portugal with variable clinical pictures, from September to November 2020. One hundred and twenty-seven tested positive for SARS-CoV-2 and 176 tested negative. Iron-related laboratory parameters and cytokines were determined in blood samples collected soon after admission. Demographic data, comorbidities and clinical outcomes were recorded. Patients were assigned into five groups according to severity. Serum iron and transferrin levels at admission were lower in COVID-19-positive than in COVID-19-negative patients. The levels of interleukin (IL)-6 and monocyte chemoattractant protein 1 (MCP-1) were increased in COVID-19-positive patients. The lowest serum iron and transferrin levels at diagnosis were associated with the worst outcomes. Iron levels negatively correlated with IL-6 and higher levels of this cytokine were associated with a worse prognosis. Serum ferritin levels at diagnosis were higher in COVID-19-positive than in COVID-19-negative patients. Serum iron is the simplest laboratory test to be implemented as a predictor of disease progression in COVID-19-positive patients

    IFN-γ-dependent reduction of erythrocyte life span leads to anemia during mycobacterial infection

    No full text
    Anemia is a frequent and challenging complication of mycobacterial infections. We used a model of disseminated Mycobacterium avium infection in mice to investigate the mechanisms of mycobacteria-induced anemia. We found increased formation of RBC in the bone marrow and spleen of infected mice. Infection induced reticulocytosis and the premature egress of immature progenitors to the systemic circulation in an IFN-γ (IFNG)-dependent way. The newly formed RBC had reduced CD47 surface expression and a reduced life span and were phagocytosed in the liver of infected mice, increasing iron recycling in this organ. The increased engulfment and degradation of RBC was independent of IFNG sensing by macrophages. Together, our findings demonstrate that mycobacterial infection alters the formation of erythrocytes, leading to their accelerated removal from circulation and hemolytic anemia. This comprehensive elucidation of the mechanisms underlying mycobacteria-induced anemia has important implications for its efficient clinical management.Fundo Europeu de Desenvolvimento Regional (FEDER) funds through the COMPETE 2020–Operacional Programme for Competitiveness and Internationalisation, Portugal 2020, and by Portuguese funds through Fundação para a Ciência e a Tecnologia (FCT)/Ministério da Ciência, Tecnologia e Ensino Superior in the framework of Project PTDC/IMI-MIC/1683/2014 (POCI-01-0145-FEDER-016590). This work also results from Project Norte-01-0145-FEDER-000012, a structured program on bioengineered therapies for infectious diseases and tissue regeneration, supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through FEDER. A.C.M. received Fellowship SFRH/BPD/101405/2014 from the FC
    corecore