99 research outputs found

    Identification of organoleptic and functional quality profiles in Spanish traditional cultivars of tomato

    Full text link
    The original publication is available at www.actahort.orgDespite the increasing importance of the internal quality in breeding programmes and marketing of tomato, little information is available regarding organoleptic and functional profiles of traditional cultivars of renowned quality. The aim of this study is to evaluate the internal quality of 51 traditional tomato accessions representative of the Spanish genepool. Total soluble solids, oxalic, malic, citric and glutamic acids, fructose, glucose and sucrose, vitamin C and lycopene were determined, thereby obtaining the respective organoleptic and functional profiles. These profiles will be very valuable in establishing breeding objectives, to provide the cultivars appreciated by consumers, willing to pay higher prices for them. A considerable high level of variability has been found in the profiles obtained and no clear groups could be identified with regards to fruit morphology or local name. Variability was higher in those traits affecting functional quality (coefficients of variation of 51.2% for vitamin C and 74.6% for lycopene content) than those affecting organoleptic quality (coefficients of variation ranged from 18% for total soluble contents to 38.8% for glutamic acid). Additionally, several accessions were selected on the basis of their higher individual contents for further studies of internal quality. These accessions were CDP8102 and CDP3547 for high malic acid, accession CDP6315 for high fructose and glucose levels, accession CDP1523 for its lycopene content and accessions CDP2226 and CDP336 for high vitamin C content. Considering previous correlations between individual contents and consumer preference, accessions CDP7554, CDP2666 and CDP3547 should be further evaluated for their overall flavour quality.Cortés Olmos, C.; Leiva Brondo, M.; Adalid Martinez, AM.; Cebolla Cornejo, J.; Nuez Viñals, F. (2011). Identification of organoleptic and functional quality profiles in Spanish traditional cultivars of tomato. International Society for Horticultural Science (ISHS). doi:10.17660/ActaHortic.2011.918.62

    A cross population between D. kaki and D. virginiana shows high variability for saline tolerance and improved salt stress tolerance

    Get PDF
    [EN] Persimmon (Diospyros kaki Thunb.) production is facing important problems related to climate change in the Mediterranean areas. One of them is soil salinization caused by the decrease and change of the rainfall distribution. In this context, there is a need to develop cultivars adapted to the increasingly challenging soil conditions. In this study, a backcross between (D. kaki x D. virginiana) x D. kaki was conducted, to unravel the mechanism involved in salinity tolerance of persimmon. The backcross involved the two species most used as rootstock for persimmon production. Both species are clearly distinct in their level of tolerance to salinity. Variables related to growth, leaf gas exchange, leaf water relations and content of nutrients were significantly affected by saline stress in the backcross population. Water flow regulation appears as a mechanism of salt tolerance in persimmon via differences in water potential and transpiration rate, which reduces ion entrance in the plant. Genetic expression of eight putative orthologous genes involved in different mechanisms leading to salt tolerance was analyzed. Differences in expression levels among populations under saline or control treatment were found. The 'High affinity potassium transporter' (HKT1-like) reduced its expression levels in the roots in all studied populations. Results obtained allowed selection of tolerant rootstocks genotypes and describe the hypothesis about the mechanisms involved in salt tolerance in persimmon that will be useful for breeding salinity tolerant rootstocks.This study was funded by the IVIA and the European Funds for Regional Development. F. G.M.was funded by a PhD fellowship from the European Social Fund and the Generalitat Valenciana (ACIF/2016/115). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.Gil Muñoz, F.; Pérez-Pérez, JG.; Quiñones, A.; Primo-Capella, A.; Cebolla Cornejo, J.; Forner Giner, MA.; Badenes Catala, M.... (2020). A cross population between D. kaki and D. virginiana shows high variability for saline tolerance and improved salt stress tolerance. PLoS ONE. 15(2):1-27. https://doi.org/10.1371/journal.pone.0229023S127152Visconti, F., de Paz, J. M., Bonet, L., Jordà, M., Quiñones, A., & Intrigliolo, D. S. (2015). Effects of a commercial calcium protein hydrolysate on the salt tolerance of Diospyros kaki L. cv. «Rojo Brillante» grafted on Diospyros lotus L. Scientia Horticulturae, 185, 129-138. doi:10.1016/j.scienta.2015.01.028Forner-Giner, M. A., & Ancillo, G. (2013). Breeding Salinity Tolerance in Citrus Using Rootstocks. Salt Stress in Plants, 355-376. doi:10.1007/978-1-4614-6108-1_14Visconti, F., Intrigliolo, D. S., Quiñones, A., Tudela, L., Bonet, L., & de Paz, J. M. (2017). Differences in specific chloride toxicity to Diospyros kaki cv. «Rojo Brillante» grafted on D. lotus and D. virginiana. Scientia Horticulturae, 214, 83-90. doi:10.1016/j.scienta.2016.11.025INCESU, M., CIMEN, B., YESILOGLU, T., & YILMAZ, B. (2014). Growth and Photosynthetic Response of Two Persimmon Rootstocks (Diospyros kaki and D. virginiana) under Different Salinity Levels. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 42(2), 386-391. doi:10.15835/nbha4229471De Paz, J. M., Visconti, F., Chiaravalle, M., & Quiñones, A. (2016). Determination of persimmon leaf chloride contents using near-infrared spectroscopy (NIRS). Analytical and Bioanalytical Chemistry, 408(13), 3537-3545. doi:10.1007/s00216-016-9430-2Gil-Muñoz, F., Peche, P. M., Climent, J., Forner, M. A., Naval, M. M., & Badenes, M. L. (2018). Breeding and screening persimmon rootstocks for saline stress tolerance. Acta Horticulturae, (1195), 105-110. doi:10.17660/actahortic.2018.1195.18Besada, C., Gil, R., Bonet, L., Quiñones, A., Intrigliolo, D., & Salvador, A. (2016). Chloride stress triggers maturation and negatively affects the postharvest quality of persimmon fruit. Involvement of calyx ethylene production. Plant Physiology and Biochemistry, 100, 105-112. doi:10.1016/j.plaphy.2016.01.006Acosta-Motos, J., Ortuño, M., Bernal-Vicente, A., Diaz-Vivancos, P., Sanchez-Blanco, M., & Hernandez, J. (2017). Plant Responses to Salt Stress: Adaptive Mechanisms. Agronomy, 7(1), 18. doi:10.3390/agronomy7010018Munns, R., & Tester, M. (2008). Mechanisms of Salinity Tolerance. Annual Review of Plant Biology, 59(1), 651-681. doi:10.1146/annurev.arplant.59.032607.092911Sibole, J. V., Cabot, C., Poschenrieder, C., & Barceló, J. (2003). Ion allocation in two different salt-tolerant MediterraneanMedicagospecies. Journal of Plant Physiology, 160(11), 1361-1365. doi:10.1078/0176-1617-00811CRAIG PLETT, D., & MØLLER, I. S. (2010). Na+transport in glycophytic plants: what we know and would like to know. Plant, Cell & Environment, 33(4), 612-626. doi:10.1111/j.1365-3040.2009.02086.xSHAPIRA, O., KHADKA, S., ISRAELI, Y., SHANI, U., & SCHWARTZ, A. (2009). Functional anatomy controls ion distribution in banana leaves: significance of Na+seclusion at the leaf margins. Plant, Cell & Environment, 32(5), 476-485. doi:10.1111/j.1365-3040.2009.01941.xHuang, C. X., & Van Steveninck, R. F. M. (1989). Maintenance of Low Cl− Concentrations in Mesophyll Cells of Leaf Blades of Barley Seedlings Exposed to Salt Stress. Plant Physiology, 90(4), 1440-1443. doi:10.1104/pp.90.4.1440Karley, A. J., Leigh, R. A., & Sanders, D. (2000). Differential Ion Accumulation and Ion Fluxes in the Mesophyll and Epidermis of Barley. Plant Physiology, 122(3), 835-844. doi:10.1104/pp.122.3.835Karley, A. J., Leigh, R. A., & Sanders, D. (2000). Where do all the ions go? The cellular basis of differential ion accumulation in leaf cells. Trends in Plant Science, 5(11), 465-470. doi:10.1016/s1360-1385(00)01758-1JAMES, R. A., MUNNS, R., VON CAEMMERER, S., TREJO, C., MILLER, C., & CONDON, T. (A. G. . (2006). Photosynthetic capacity is related to the cellular and subcellular partitioning of Na+, K+and Cl-in salt-affected barley and durum wheat. Plant, Cell and Environment, 29(12), 2185-2197. doi:10.1111/j.1365-3040.2006.01592.xZekri, M., & Parsons, L. R. (1989). Growth and root hydraulic conductivity of several citrus rootstocks under salt and polyethylene glycol stresses. Physiologia Plantarum, 77(1), 99-106. doi:10.1111/j.1399-3054.1989.tb05984.xJoly, R. J. (1989). Effects of Sodium Chloride on the Hydraulic Conductivity of Soybean Root Systems. Plant Physiology, 91(4), 1262-1265. doi:10.1104/pp.91.4.1262Maurel, C., Verdoucq, L., Luu, D.-T., & Santoni, V. (2008). Plant Aquaporins: Membrane Channels with Multiple Integrated Functions. Annual Review of Plant Biology, 59(1), 595-624. doi:10.1146/annurev.arplant.59.032607.092734Johanson, U., Karlsson, M., Johansson, I., Gustavsson, S., Sjövall, S., Fraysse, L., … Kjellbom, P. (2001). The Complete Set of Genes Encoding Major Intrinsic Proteins in Arabidopsis Provides a Framework for a New Nomenclature for Major Intrinsic Proteins in Plants. Plant Physiology, 126(4), 1358-1369. doi:10.1104/pp.126.4.1358Carmen Martínez-Ballesta, M., Aparicio, F., Pallás, V., Martínez, V., & Carvajal, M. (2003). Influence of saline stress on root hydraulic conductance and PIP expression inArabidopsis. Journal of Plant Physiology, 160(6), 689-697. doi:10.1078/0176-1617-00861Boursiac, Y., Chen, S., Luu, D.-T., Sorieul, M., van den Dries, N., & Maurel, C. (2005). Early Effects of Salinity on Water Transport in Arabidopsis Roots. Molecular and Cellular Features of Aquaporin Expression. Plant Physiology, 139(2), 790-805. doi:10.1104/pp.105.065029López-Pérez, L., Martínez-Ballesta, M. del C., Maurel, C., & Carvajal, M. (2009). Changes in plasma membrane lipids, aquaporins and proton pump of broccoli roots, as an adaptation mechanism to salinity. Phytochemistry, 70(4), 492-500. doi:10.1016/j.phytochem.2009.01.014Rodríguez-Gamir, J., Ancillo, G., Legaz, F., Primo-Millo, E., & Forner-Giner, M. A. (2012). Influence of salinity on pip gene expression in citrus roots and its relationship with root hydraulic conductance, transpiration and chloride exclusion from leaves. Environmental and Experimental Botany, 78, 163-166. doi:10.1016/j.envexpbot.2011.12.027Chaumont, F., & Tyerman, S. D. (2014). Aquaporins: Highly Regulated Channels Controlling Plant Water Relations. Plant Physiology, 164(4), 1600-1618. doi:10.1104/pp.113.233791Amtmann, A., & Sanders, D. (1998). Mechanisms of Na+ Uptake by Plant Cells. Advances in Botanical Research, 75-112. doi:10.1016/s0065-2296(08)60310-9TESTER, M. (2003). Na+ Tolerance and Na+ Transport in Higher Plants. Annals of Botany, 91(5), 503-527. doi:10.1093/aob/mcg058Qiu, Q.-S., Barkla, B. J., Vera-Estrella, R., Zhu, J.-K., & Schumaker, K. S. (2003). Na+/H+ Exchange Activity in the Plasma Membrane of Arabidopsis. Plant Physiology, 132(2), 1041-1052. doi:10.1104/pp.102.010421Shi, H., Quintero, F. J., Pardo, J. M., & Zhu, J.-K. (2002). The Putative Plasma Membrane Na+/H+ Antiporter SOS1 Controls Long-Distance Na+ Transport in Plants. The Plant Cell, 14(2), 465-477. doi:10.1105/tpc.010371Zhu, J.-K., Liu, J., & Xiong, L. (1998). Genetic Analysis of Salt Tolerance in Arabidopsis: Evidence for a Critical Role of Potassium Nutrition. The Plant Cell, 10(7), 1181-1191. doi:10.1105/tpc.10.7.1181Liu, J., & Zhu, J.-K. (1998). A Calcium Sensor Homolog Required for Plant Salt Tolerance. Science, 280(5371), 1943-1945. doi:10.1126/science.280.5371.1943Halfter, U., Ishitani, M., & Zhu, J.-K. (2000). The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3. Proceedings of the National Academy of Sciences, 97(7), 3735-3740. doi:10.1073/pnas.97.7.3735Liu, J., Ishitani, M., Halfter, U., Kim, C.-S., & Zhu, J.-K. (2000). The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance. Proceedings of the National Academy of Sciences, 97(7), 3730-3734. doi:10.1073/pnas.97.7.3730Hrabak, E. M., Chan, C. W. M., Gribskov, M., Harper, J. F., Choi, J. H., Halford, N., … Harmon, A. C. (2003). The Arabidopsis CDPK-SnRK Superfamily of Protein Kinases. Plant Physiology, 132(2), 666-680. doi:10.1104/pp.102.011999Shi, H., Ishitani, M., Kim, C., & Zhu, J.-K. (2000). The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proceedings of the National Academy of Sciences, 97(12), 6896-6901. doi:10.1073/pnas.120170197Qiu, Q.-S., Guo, Y., Dietrich, M. A., Schumaker, K. S., & Zhu, J.-K. (2002). Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proceedings of the National Academy of Sciences, 99(12), 8436-8441. doi:10.1073/pnas.122224699Quintero, F. J., Ohta, M., Shi, H., Zhu, J.-K., & Pardo, J. M. (2002). Reconstitution in yeast of the Arabidopsis SOS signaling pathway for Na+ homeostasis. Proceedings of the National Academy of Sciences, 99(13), 9061-9066. doi:10.1073/pnas.132092099Quan, R., Lin, H., Mendoza, I., Zhang, Y., Cao, W., Yang, Y., … Guo, Y. (2007). SCABP8/CBL10, a Putative Calcium Sensor, Interacts with the Protein Kinase SOS2 to Protect Arabidopsis Shoots from Salt Stress. The Plant Cell, 19(4), 1415-1431. doi:10.1105/tpc.106.042291Quintero, F. J., Martinez-Atienza, J., Villalta, I., Jiang, X., Kim, W.-Y., Ali, Z., … Pardo, J. M. (2011). Activation of the plasma membrane Na/H antiporter Salt-Overly-Sensitive 1 (SOS1) by phosphorylation of an auto-inhibitory C-terminal domain. Proceedings of the National Academy of Sciences, 108(6), 2611-2616. doi:10.1073/pnas.1018921108Ji, H., Pardo, J. M., Batelli, G., Van Oosten, M. J., Bressan, R. A., & Li, X. (2013). The Salt Overly Sensitive (SOS) Pathway: Established and Emerging Roles. Molecular Plant, 6(2), 275-286. doi:10.1093/mp/sst017Isayenkov, S. V., & Maathuis, F. J. M. (2019). Plant Salinity Stress: Many Unanswered Questions Remain. Frontiers in Plant Science, 10. doi:10.3389/fpls.2019.00080Evans, A. R., Hall, D., Pritchard, J., & Newbury, H. J. (2011). The roles of the cation transporters CHX21 and CHX23 in the development of Arabidopsis thaliana. Journal of Experimental Botany, 63(1), 59-67. doi:10.1093/jxb/err271Uozumi, N., Kim, E. J., Rubio, F., Yamaguchi, T., Muto, S., Tsuboi, A., … Schroeder, J. I. (2000). The Arabidopsis HKT1 Gene Homolog Mediates Inward Na+ Currents in Xenopus laevis Oocytes and Na+ Uptake in Saccharomyces cerevisiae  . Plant Physiology, 122(4), 1249-1260. doi:10.1104/pp.122.4.1249Mäser, P., Eckelman, B., Vaidyanathan, R., Horie, T., Fairbairn, D. J., Kubo, M., … Schroeder, J. I. (2002). Altered shoot/root Na+ distribution and bifurcating salt sensitivity in Arabidopsis by genetic disruption of the Na+ transporter AtHKT1. FEBS Letters, 531(2), 157-161. doi:10.1016/s0014-5793(02)03488-9Berthomieu, P. (2003). Functional analysis of AtHKT1 in Arabidopsis shows that Na+ recirculation by the phloem is crucial for salt tolerance. The EMBO Journal, 22(9), 2004-2014. doi:10.1093/emboj/cdg207Rus, A., Lee, B., Muñoz-Mayor, A., Sharkhuu, A., Miura, K., Zhu, J.-K., … Hasegawa, P. M. (2004). AtHKT1 Facilitates Na+ Homeostasis and K+ Nutrition in Planta. Plant Physiology, 136(1), 2500-2511. doi:10.1104/pp.104.042234Sunarpi, Horie, T., Motoda, J., Kubo, M., Yang, H., Yoda, K., … Uozumi, N. (2005). Enhanced salt tolerance mediated by AtHKT1 transporter-induced Na+ unloading from xylem vessels to xylem parenchyma cells. The Plant Journal, 44(6), 928-938. doi:10.1111/j.1365-313x.2005.02595.xHuang, S., Spielmeyer, W., Lagudah, E. S., James, R. A., Platten, J. D., Dennis, E. S., & Munns, R. (2006). A Sodium Transporter (HKT7) Is a Candidate forNax1, a Gene for Salt Tolerance in Durum Wheat. Plant Physiology, 142(4), 1718-1727. doi:10.1104/pp.106.088864Byrt, C. S., Platten, J. D., Spielmeyer, W., James, R. A., Lagudah, E. S., Dennis, E. S., … Munns, R. (2007). HKT1;5-Like Cation Transporters Linked to Na+ Exclusion Loci in Wheat, Nax2 and Kna1. Plant Physiology, 143(4), 1918-1928. doi:10.1104/pp.106.093476Garciadeblás, B., Senn, M. E., Bañuelos, M. A., & Rodríguez-Navarro, A. (2003). Sodium transport and HKT transporters: the rice model. The Plant Journal, 34(6), 788-801. doi:10.1046/j.1365-313x.2003.01764.xHuang, S., Spielmeyer, W., Lagudah, E. S., & Munns, R. (2008). Comparative mapping of HKT genes in wheat, barley, and rice, key determinants of Na+ transport, and salt tolerance. Journal of Experimental Botany, 59(4), 927-937. doi:10.1093/jxb/ern033Horie, T., Costa, A., Kim, T. H., Han, M. J., Horie, R., Leung, H.-Y., … Schroeder, J. I. (2007). Rice OsHKT2;1 transporter mediates large Na+ influx component into K+-starved roots for growth. The EMBO Journal, 26(12), 3003-3014. doi:10.1038/sj.emboj.7601732Almeida, P., Katschnig, D., & de Boer, A. (2013). HKT Transporters—State of the Art. International Journal of Molecular Sciences, 14(10), 20359-20385. doi:10.3390/ijms141020359Cellier, F., Conéjéro, G., Ricaud, L., Luu, D. T., Lepetit, M., Gosti, F., & Casse, F. (2004). Characterization ofAtCHX17, a member of the cation/H+exchangers, CHX family, fromArabidopsis thalianasuggests a role in K+homeostasis. The Plant Journal, 39(6), 834-846. doi:10.1111/j.1365-313x.2004.02177.xSong, C.-P., Guo, Y., Qiu, Q., Lambert, G., Galbraith, D. W., Jagendorf, A., & Zhu, J.-K. (2004). A probable Na+(K+)/H+ exchanger on the chloroplast envelope functions in pH homeostasis and chloroplast development in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 101(27), 10211-10216. doi:10.1073/pnas.0403709101Padmanaban, S., Chanroj, S., Kwak, J. M., Li, X., Ward, J. M., & Sze, H. (2007). Participation of Endomembrane Cation/H+ Exchanger AtCHX20 in Osmoregulation of Guard Cells. Plant Physiology, 144(1), 82-93. doi:10.1104/pp.106.092155Szczerba, M. W., Britto, D. T., & Kronzucker, H. J. (2009). K+ transport in plants: Physiology and molecular biology. Journal of Plant Physiology, 166(5), 447-466. doi:10.1016/j.jplph.2008.12.009Brini, F., Gaxiola, R. A., Berkowitz, G. A., & Masmoudi, K. (2005). Cloning and characterization of a wheat vacuolar cation/proton antiporter and pyrophosphatase proton pump. Plant Physiology and Biochemistry, 43(4), 347-354. doi:10.1016/j.plaphy.2005.02.010Barragán, V., Leidi, E. O., Andrés, Z., Rubio, L., De Luca, A., Fernández, J. A., … Pardo, J. M. (2012). Ion Exchangers NHX1 and NHX2 Mediate Active Potassium Uptake into Vacuoles to Regulate Cell Turgor and Stomatal Function in Arabidopsis. The Plant Cell, 24(3), 1127-1142. doi:10.1105/tpc.111.095273Barbier-Brygoo, H., De Angeli, A., Filleur, S., Frachisse, J.-M., Gambale, F., Thomine, S., & Wege, S. (2011). Anion Channels/Transporters in Plants: From Molecular Bases to Regulatory Networks. Annual Review of Plant Biology, 62(1), 25-51. doi:10.1146/annurev-arplant-042110-103741Apse, M. P., Aharon, G. S., Snedden, W. A., & Blumwald, E. (1999). Salt Tolerance Conferred by Overexpression of a Vacuolar Na + /H + Antiport in Arabidopsis. Science, 285(5431), 1256-1258. doi:10.1126/science.285.5431.1256Gaxiola, R. A., Li, J., Undurraga, S., Dang, L. M., Allen, G. J., Alper, S. L., & Fink, G. R. (2001). Drought- and salt-tolerant plants result from overexpression of the AVP1 H+-pump. Proceedings of the National Academy of Sciences, 98(20), 11444-11449. doi:10.1073/pnas.191389398Callister, A. N., Arndt, S. K., & Adams, M. A. (2006). Comparison of four methods for measuring osmotic potential of tree leaves. Physiologia Plantarum, 127(3), 383-392. doi:10.1111/j.1399-3054.2006.00652.xBates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1), 205-207. doi:10.1007/bf00018060Gilliam, J. W. (1971). Rapid Measurement of Chlorine in Plant Materials. Soil Science Society of America Journal, 35(3), 512-513. doi:10.2136/sssaj1971.03615995003500030051xGambino, G., Perrone, I., & Gribaudo, I. (2008). A Rapid and effective method for RNA extraction from different tissues of grapevine and other woody plants. Phytochemical Analysis, 19(6), 520-525. doi:10.1002/pca.1078Akagi, T., Henry, I. M., Kawai, T., Comai, L., & Tao, R. (2016). Epigenetic Regulation of the Sex Determination Gene MeGI in Polyploid Persimmon. The Plant Cell, 28(12), 2905-2915. doi:10.1105/tpc.16.00532Andersen, C. L., Jensen, J. L., & Ørntoft, T. F. (2004). Normalization of Real-Time Quantitative Reverse Transcription-PCR Data: A Model-Based Variance Estimation Approach to Identify Genes Suited for Normalization, Applied to Bladder and Colon Cancer Data Sets. Cancer Research, 64(15), 5245-5250. doi:10.1158/0008-5472.can-04-0496Akagi, T., Ikegami, A., Tsujimoto, T., Kobayashi, S., Sato, A., Kono, A., & Yonemori, K. (2009). DkMyb4 Is a Myb Transcription Factor Involved in Proanthocyanidin Biosynthesis in Persimmon Fruit. Plant Physiology, 151(4), 2028-2045. doi:10.1104/pp.109.146985Chambers, J. M., Cleveland, W. S., Kleiner, B., & Tukey, P. A. (2018). Graphical Methods for Data Analysis. doi:10.1201/9781351072304Flowers, T. J., & Colmer, T. D. (2008). Salinity tolerance in halophytes*. New Phytologist, 179(4), 945-963. doi:10.1111/j.1469-8137.2008.02531.xMunns, R. (2002). Comparative physiology of salt and water stress. Plant, Cell & Environment, 25(2), 239-250. doi:10.1046/j.0016-8025.2001.00808.xBrugnoli, E., & Lauteri, M. (1991). Effects of Salinity on Stomatal Conductance, Photosynthetic Capacity, and Carbon Isotope Discrimination of Salt-Tolerant (Gossypium hirsutum L.) and Salt-Sensitive (Phaseolus vulgaris L.) C3 Non-Halophytes. Plant Physiology, 95(2), 628-635. doi:10.1104/pp.95.2.628Koyro, H.-W. (2006). Effect of salinity on growth, photosynthesis, water relations and solute composition of the potential cash crop halophyte Plantago coronopus (L.). Environmental and Experimental Botany, 56(2), 136-146. doi:10.1016/j.envexpbot.2005.02.001Rahnama, A., James, R. A., Poustini, K., & Munns, R. (2010). Stomatal conductance as a screen for osmotic stress tolerance in durum wheat growing in saline soil. Functional Plant Biology, 37(3), 255. doi:10.1071/fp09148Zhu, X., Cao, Q., Sun, L., Yang, X., Yang, W., & Zhang, H. (2018). Stomatal Conductance and Morphology of Arbuscular Mycorrhizal Wheat Plants Response to Elevated CO2 and NaCl Stress. Frontiers in Plant Science, 9. doi:10.3389/fpls.2018.01363Horie, T., Sugawara, M., Okunou, K., Nakayama, H., Schroeder, J. I., Shinmyo, A., & Yoshida, K. (2008). Functions of HKT transporters in sodium transport in roots and in protecting leaves from salinity stress. Plant Biotechnology, 25(3), 233-239. doi:10.5511/plantbiotechnology.25.233Hazzouri, K. M., Khraiwesh, B., Amiri, K. M. A., Pauli, D., Blake, T., Shahid, M., … Masmoudi, K. (2018). Mapping of HKT1;5 Gene in Barley Using GWAS Approach and Its Implication in Salt Tolerance Mechanism. Frontiers in Plant Science, 9. doi:10.3389/fpls.2018.00156Han, Y., Yin, S., Huang, L., Wu, X., Zeng, J., Liu, X., … Zhang, G. (2018). A Sodium Transporter HvHKT1;1 Confers Salt Tolerance in Barley via Regulating Tissue and Cell Ion Homeostasis. Plant and Cell Physiology, 59(10), 1976-1989. doi:10.1093/pcp/pcy116Henderson, S. W., Baumann, U., Blackmore, D. H., Walker, A. R., Walker, R. R., & Gilliham, M. (2014). Shoot chloride exclusion and salt tolerance in grapevine is associated with differential ion transporter expression in roots. BMC Plant Biology, 14(1). doi:10.1186/s12870-014-0273-8Vitali, V., Bellati, J., Soto, G., Ayub, N. D., & Amodeo, G. (2015). Root hydraulic conductivity and adjustments in stomatal conductance: hydraulic strategy in response to salt stress in a halotolerant species. AoB Plants, 7, plv136. doi:10.1093/aobpla/plv13

    Detection of Motor Cerebral Activity After Median Nerve Stimulation During General Anesthesia (STIM-MOTANA): Protocol for a Prospective Interventional Study

    Get PDF
    International audienceBackground Accidental awareness during general anesthesia (AAGA) is defined as an unexpected awareness of the patient during general anesthesia. This phenomenon occurs in 1%-2% of high-risk practice patients and can cause physical suffering and psychological after-effects, called posttraumatic stress disorder. In fact, no monitoring techniques are satisfactory enough to effectively prevent AAGA; therefore, new alternatives are needed. Because the first reflex for a patient during an AAGA is to move, but cannot do so because of the neuromuscular blockers, we believe that it is possible to design a brain-computer interface (BCI) based on the detection of movement intention to warn the anesthetist. To do this, we propose to describe and detect the changes in terms of motor cortex oscillations during general anesthesia with propofol, while a median nerve stimulation is performed. We believe that our results could enable the design of a BCI based on median nerve stimulation, which could prevent AAGA. Objective To our knowledge, no published studies have investigated the detection of electroencephalographic (EEG) patterns in relation to peripheral nerve stimulation over the sensorimotor cortex during general anesthesia. The main objective of this study is to describe the changes in terms of event-related desynchronization and event-related synchronization modulations, in the EEG signal over the motor cortex during general anesthesia with propofol while a median nerve stimulation is performed. Methods STIM-MOTANA is an interventional and prospective study conducted with patients scheduled for surgery under general anesthesia, involving EEG measurements and median nerve stimulation at two different times: (1) when the patient is awake before surgery (2) and under general anesthesia. A total of 30 patients will receive surgery under complete intravenous anesthesia with a target-controlled infusion pump of propofol. Results The changes in event-related desynchronization and event-related synchronization during median nerve stimulation according to the various propofol concentrations for 30 patients will be analyzed. In addition, we will apply 4 different offline machine learning algorithms to detect the median nerve stimulation at the cerebral level. Recruitment began in December 2022. Data collection is expected to conclude in June 2024. Conclusions STIM-MOTANA will be the first protocol to investigate median nerve stimulation cerebral motor effect during general anesthesia for the detection of intraoperative awareness. Based on strong practical and theoretical scientific reasoning from our previous studies, our innovative median nerve stimulation–based BCI would provide a way to detect intraoperative awareness during general anesthesia. Trial Registration Clinicaltrials.gov NCT05272202; https://clinicaltrials.gov/ct2/show/NCT05272202 International Registered Report Identifier (IRRID) PRR1-10.2196/4387

    Mindfulness, promoção da saúde e semiótica: bases para modelos comunicacionais em saúde online

    Get PDF
    Objetivo: analizar un curso en línea sobre promoción de la salud basado en la atención plena (mindfulness) a través de la teoría de la semiótica discursiva en uno de sus desarrollos más recientes, el aspecto visual o plástico. El objetivo es identificar cómo el texto verbal-visual del curso produce significados y cómo puede ayudar en el diseño de otros cursos. Método: se llevó a cabo un análisis semiótico de dos prácticas y una impresión de pantalla del curso llamado Programa de autocuidado basado en la atención plena, en educación a distancia, desarrollado por el Centro Brasileño de Mindfulness y Promoción de la Salud (“Mente Abierta”), del Departamento de Medicina Preventivade de la Universidad Federal de São Paulo. Resultados: se evaluaronlos elementos estéticos que contribuyeron a la construcción de un entorno de práctica eufórica (vinculado a la salud) y se establecieron relaciones entre el plan de contenido y el plan de expresión de práctica, responsables de la construcción de relaciones semi-simbólicas. Conclusión: se confirmó la valoración de una estética de simplicidad de colores y formas, que convergió en una afirmación de los valores de calma y bienestar compatibles con las prácticas de mindfulness. Objetictive: to analyze an online course on health promotion based on mindfulness (mindfulness) through the theory of discursive semiotics in one of its most recent developments, the visual or plastic aspect. The objective is to identify how the verbal-visual text of the course producesmeanings and how it can help in the design of other courses. Method: a semiotic analysis of two practices and a screen print of the course called Mindfulness-Based Self-Care Program, in distance learning, developed by the Brazilian Center for Mindfulness and Health Promotion (“Open Mind”), of the Department of Preventive Medicine at the Federal University of São Paulo. Results: the aesthetic elements that contributed to the construction of an euphoric practice environment (linked to health) were evaluated and relationships were established between the content planand the practice expression plan, responsible for the construction of a semi-symbolic system. Conclusion: it was confirmed the appreciation of an aesthetics of simplicity of colors and shapes that was converged to an affirmation of the values of calm and well-being compatible with the practices of mindfulness. From this analysis, we seek to reflect on the bases for the development of communicational models related to health promotion in a digital environment.Objetivo: identificar como o texto verbo-visual do curso produz sentidos e como isso pode auxiliar na  construção do design de outros cursos. Método: foi feita a análise semiótica de duas práticas e de um print de tela do curso denominadoPrograma de Autocuidado Baseado em Mindfulness, na modalidade Educação à Distância, desenvolvido pelo CentroBrasileiro de Mindfulness e Promoção da Saúde (“Mente Aberta”), do Departamento de Medicina Preventiva da Universidade Federal de São Paulo. Foram avaliados os elementos estéticos que contribuiriam para a construção de um ambiente de prática eufórico (ligado à saúde) e estabelecidas relações entre o plano de conteúdo e o plano de expressão das práticas, responsáveis pela construção de um sistema semissimbólico. Resultados: confirmou-se a valorização de uma estética da simplicidade de cores eformas que converge para uma afirmação dos valores calma e bem-estar compatíveis com as práticas de mindfulness. Conclusão: a partir dessa análise, busca-se refletir sobre asbases para o desenvolvimento de modelos comunicacionais relacionados à promoção da saúde em ambiente digital.

    Pure phase-locking of beta/gamma oscillation contributes to the N30 frontal component of somatosensory evoked potentials

    Get PDF
    BACKGROUND: Evoked potentials have been proposed to result from phase-locking of electroencephalographic (EEG) activities within specific frequency bands. However, the respective contribution of phasic activity and phase resetting of ongoing EEG oscillation remains largely debated. We here applied the EEGlab procedure in order to quantify the contribution of electroencephalographic oscillation in the generation of the frontal N30 component of the somatosensory evoked potentials (SEP) triggered by median nerve electrical stimulation at the wrist. Power spectrum and intertrial coherence analysis were performed on EEG recordings in relation to median nerve stimulation. RESULTS: The frontal N30 component was accompanied by a significant phase-locking of beta/gamma oscillation (25-35 Hz) and to a lesser extent of 80 Hz oscillation. After the selection in each subject of the trials for which the power spectrum amplitude remained unchanged, we found pure phase-locking of beta/gamma oscillation (25-35 Hz) peaking about 30 ms after the stimulation. Transition across trials from uniform to normal phase distribution revealed temporal phase reorganization of ongoing 30 Hz EEG oscillations in relation to stimulation. In a proportion of trials, this phase-locking was accompanied by a spectral power increase peaking in the 30 Hz frequency band. This corresponds to the complex situation of 'phase-locking with enhancement' in which the distinction between the contribution of phasic neural event versus EEG phase resetting is hazardous. CONCLUSION: The identification of a pure phase-locking in a large proportion of the SEP trials reinforces the contribution of the oscillatory model for the physiological correlates of the frontal N30. This may imply that ongoing EEG rhythms, such as beta/gamma oscillation, are involved in somatosensory information processing.Comparative StudyJournal ArticleResearch Support, Non-U.S. Gov'tinfo:eu-repo/semantics/publishe

    Management of acute diverticulitis with pericolic free gas (ADIFAS). an international multicenter observational study

    Get PDF
    Background: There are no specific recommendations regarding the optimal management of this group of patients. The World Society of Emergency Surgery suggested a nonoperative strategy with antibiotic therapy, but this was a weak recommendation. This study aims to identify the optimal management of patients with acute diverticulitis (AD) presenting with pericolic free air with or without pericolic fluid. Methods: A multicenter, prospective, international study of patients diagnosed with AD and pericolic-free air with or without pericolic free fluid at a computed tomography (CT) scan between May 2020 and June 2021 was included. Patients were excluded if they had intra-abdominal distant free air, an abscess, generalized peritonitis, or less than a 1-year follow-up. The primary outcome was the rate of failure of nonoperative management within the index admission. Secondary outcomes included the rate of failure of nonoperative management within the first year and risk factors for failure. Results: A total of 810 patients were recruited across 69 European and South American centers; 744 patients (92%) were treated nonoperatively, and 66 (8%) underwent immediate surgery. Baseline characteristics were similar between groups. Hinchey II-IV on diagnostic imaging was the only independent risk factor for surgical intervention during index admission (odds ratios: 12.5, 95% CI: 2.4-64, P =0.003). Among patients treated nonoperatively, at index admission, 697 (94%) patients were discharged without any complications, 35 (4.7%) required emergency surgery, and 12 (1.6%) percutaneous drainage. Free pericolic fluid on CT scan was associated with a higher risk of failure of nonoperative management (odds ratios: 4.9, 95% CI: 1.2-19.9, P =0.023), with 88% of success compared to 96% without free fluid ( P <0.001). The rate of treatment failure with nonoperative management during the first year of follow-up was 16.5%. Conclusion: Patients with AD presenting with pericolic free gas can be successfully managed nonoperatively in the vast majority of cases. Patients with both free pericolic gas and free pericolic fluid on a CT scan are at a higher risk of failing nonoperative management and require closer observation

    The N30 component of the somatosensory evoked potentials: a new tool for EEG dynamic exploration of human brain in space

    No full text
    Whether ongoing electroencephalogram (EEG) signal contributes to event related potential (ERP) generation is currently a matter of discussion for all sensory modalities. Resolving the controversy between additive and the oscillatory models has become crucial because evoked potentials are increasingly used in clinical practice as a physiological and neuropsychological index of brain areas or as a link with other functional approaches such as fMRI and the underlying network. The key issue is the search for a function underlying these mechanisms. Somatosensory evoked potentials are robust indicators of the afferent information at cortical level. In particular, the frontal N30 component of SEP can serve as a reliable physiological index of the dopaminergic motor pathway (Insola et al. 1999, Pierantozzi et al. 1999). Its properties in sensory-motor gating and cognitive processes make its fine analysis particularly interesting. The physiological interpretation and the origin of the frontal N30 are still debated (Allison et al. 1991, Cheron et al. 1994, Karnovsky et al. 1997, Balzamo et al. 2004, Barba et al. 2005).In this thesis we have investigated the mechanisms generating the N30 SEP component produced by electrical stimulation at median nerve at wrist, with reference to the current questioning of the additive and oscillatory models of the ERP (Sayers et al. 1974; Basar et al. 1980).We have applied analysis of the spectral content of neuronal oscillatory activity recorded in electroencephalographic (EEG) in order to study of dynamic brain processing underlying the N30 component. Concretely for studying whether the occurrence of the N30 related input induce amplitude modulation and/or reorganization of EEG rhythms we have analyzed separately power perturbation and phase synchrony of single EEG oscillations trials by means of event-related spectral perturbation (ERSP) and intertrial coherence (ITC) measurements. In addition, in order to model brain localizations of phase synchrony and power enhancement and to compare them to model localization of the N30 SEP we used swLORETA, a distributive method of source analysis.We have demonstrated that:(1) Ongoing EEG signals contribute to the generation of the N30 component (Cheron et al. 2007).(2) Dynamics of ongoing EEG signals underlie the specific behavior of the N30 during gating produced by movement execution (Cebolla et al. 2009).(3) Localization of brain sources generating the N30 SEP component overlaps those generating beta-gamma ongoing oscillations at the same short latency (Cebolla et al. 2010).Additionally the work developed during this thesis has served to develop a comprehensive, pragmatic paradigm to identify, evaluate and understand the somatosensory alterations in defined contexts, as illustrated by our recent work on perturbations and adaptations in astronauts over long term microgravity stay. We think that addressing this topic is essential in order to optimize and objectively evaluate adaptation to microgravity. We therefore proposed a detailed project to European Space Agency entitled “The frontal N30 somatosensory evoked potential for the study of sensory-motor and cognitive adaptations in weightlessness: NeuroSEP” (ILSRA 2009) in which we also proposed direct applications for quality of life aboard International Space Station, for the medical field and industry.Doctorat en Sciences de la motricitéinfo:eu-repo/semantics/nonPublishe

    Understanding neural oscillations in the human brain: From movement to consciousness and vice versa

    No full text
    SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Sensorimotor and cognitive involvement of the beta-gamma oscillation in the frontal N30 component of somatosensory evoked potentials

    No full text
    The most consistent negative cortical component of somatosensory evoked potentials (SEPs), namely the frontal N30, can be considered more multidimensional than a strict item of standard somatosensory investigation, dedicated to tracking the afferent volley from the peripheral sensory nerve potentials to the primary somatosensory cortex. In this review, we revisited its classical sensorimotor implication within the framework of the recent oscillatory model of ongoing electroencephalogram (EEG) rhythms.Recently, the N30 component was demonstrated to be related to an increase in the power of beta-gamma EEG oscillation and a phase reorganization of the ongoing EEG oscillations (phase locking) in this frequency band. Thanks to high density EEG recordings and the inverse modeling method (swLORETA), it was shown that different overlapping areas of the motor and premotor cortex are specifically involved in generating the N30 in the form of a beta gamma oscillatory phase locking and power increase. This oscillatory approach has allowed a re-investigation of the movement gating behavior of the N30. It was demonstrated that the concomitant execution of finger movements by a stimulated hand impinges the temporal concentration of the ongoing beta/gamma EEG oscillations and abolished the N30 component. It was hypothesized that the involvement of neuronal populations in both the sensorimotor cortex and other related areas were unable to respond to the phasic sensory activation so could not phase-lock their oscillatory signals to the external sensory input during the movement. In this case, the actual movement has primacy over the artificial somatosensory input. The contribution of the ongoing oscillatory activity in the N30 emergence calls for a reappraisal of fundamental and clinical interpretations of the frontal N30 component. An absent or reduced amplitude of the N30 can now be viewed not only as a deficit in the activation of the somatosensory synaptic network in response to sensory input, but also as a global alteration of the beta-gamma ongoing oscillation and/or of the phase-locking mechanism itself.In addition, it has lately been shown that the N30 amplitude increases during the observation of another person's hand movement. A new paradigm in which the experimenter's hand movement, observed by the participant, triggered the electric stimulation of the subject's hand has been introduced. This has allowed the identification of different cortical areas which are closely related to those involved in the mirror neuron system. This contribution of N30 behavior has paved the way for future investigation of the integration of sensory input into cognitive context.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore