5 research outputs found

    Multiple-Criteria Decision Analysis and characterisation of phase change materials for waste heat recovery at high temperature for sustainable energy-intensive industry

    Get PDF
    A latent heat storage system based on Phase Change Materials (PCMs) is proposed to increase the energy and environmental efficiency by recovering and storing waste heat from combustion gases or other surplus sources at in the energy-intensive industries (EII), currently unused. The final configuration design is specifically adapted to the plant operational requirements, by means of a methodology combining the search of the best conceptual design and a proper selection of core PCMs. To that end, a selection of suitable PCM is carried out by using characterisation techniques and thermal stability testing. Furthermore, relevant key factors are weighted by an in-house Multiple-Criteria Decision Analysis (MCDA) to define the most promising design options to be implemented in two plants belonging to the EII sector. For the ceramic sector, the design resulted in a shell-and-tube system with 1188 kg of a PCM melting at 885 °C and encapsulated in double concentric tubes, involving a storage capacity of 227 MJ. Similarly, 1606 kg of PCM, whose phase-change temperature is 509 °C, is selected for the steel sector providing a PCM-TES system capable to store 420 MJ

    Accumulation of De-Icing Salt and Leaching in Spanish soils surrounding roadwayss

    Get PDF
    The environmental implications of soil salinity caused by accumulation of de-icing salt and leaching in soils of northeastern Spain were examined. For this purpose, the concentrations of ions associated with diagnosing and managing this problem were evaluated from several measurements performed over one year along a road. This analysis demonstrated a higher concentration of soluble Na+ in the soil 3 m from a road in the northernmost part of the study area in February, which made the soil saline-sodic. Data from the rest of the study period (during the spring and summer) demonstrated that the de-icing salt moved to areas farther south by runoff water, which caused environmental impacts by modifying soil characteristics. These results suggest that leaching of Ca2+ and Mg2+ cations occurred faster in the studied systems in sodic soils. Leaching of these cations may affect plant yield, and results in environmental impacts within 3–30 m from the road. Awareness of this impact will be useful for developing future strategies for evaluating and reporting these complex relationships within Spain’s transport system and environment

    Technical and environmental evaluation of a new high performance material based on magnesium alloy reinforced with submicrometre-sized TiC particles to develop automotive lightweight components and make transport sector more sustainable

    Get PDF
    This study evaluated the use of submicrometre-sized particles based on titanium carbide from both technical and environmental points of view. The objective was to improve the mechanical properties of the magnesium alloy intended for use in the automotive component industry. To this end, an Al/TiC master compound containing 60 wt.% of TiC was produced through a self-propagating, high-temperature synthesis process and embedded in a magnesium alloy by a mechanical stirring method. The life cycle assessment methodology was then used to evaluate the environmental impact of the manufacturing of the magnesium alloy reinforced with submicrometre-sized particles. X-ray diffraction and scanning electron microscopy techniques revealed the nature and purity of the TiC present in the material and revealed particle sizes below submicrometre range (300–500 nm). The incorporation of TiC particles into the magnesium alloy resulted in improvements in yield stress and ultimate tensile strength of more than 10% and 18%, respectively, and increases in ductility values by 30%. Finally, the results indicated that the submicrometre particle production had a low environmental impact compared with the total impact associated with manufacturing the magnesium alloy reinforced with submicrometre-sized particles; the greatest environmental burden was attributed to the magnesium production stage. However, this impact is offset in the use phase of the vehicle, providing approximately 28,000 km of mileage for a car.The research leading to these results has been received funding form the European Union Seventh Framework Programme( FP7/20072013) under grant agreement n 314582 EFEVE project. The authors thank the project partners for providing support to this research
    corecore