3 research outputs found

    Cannabinoid Agonists Inhibit Neuropathic Pain Induced by Brachial Plexus Avulsion in Mice by Affecting Glial Cells and MAP Kinases

    Get PDF
    Many studies have shown the antinociceptive effects of cannabinoid (CB) agonists in different models of pain. Herein, we have investigated their relevance in neuropathic pain induced by brachial plexus avulsion (BPA) in mice.Mice underwent BPA or sham surgery. The mRNA levels and protein expression of CB(1) and CB(2) receptors were assessed by RT-PCR and immunohistochemistry, respectively. The activation of glial cells, MAP kinases and transcription factors were evaluated by immunohistochemistry. The antinociceptive properties induced by cannabinoid agonists were assessed on the 5(th) and 30(th) days after surgery. We observed a marked increase in CB(1) and CB(2) receptor mRNA and protein expression in the spinal cord and dorsal root ganglion, either at the 5(th) or 30(th) day after surgery. BPA also induced a marked activation of p38 and JNK MAP kinases (on the 30(th) day), glial cells, such as microglia and astrocytes, and the transcription factors CREB and NF-κB (at the 5(th) and 30(th) days) in the spinal cord. Systemic treatment with cannabinoid agonists reduced mechanical allodynia on both the 5(th) and 30(th) days after surgery, but the greatest results were observed by using central routes of administration, especially at the 30(th) day. Treatment with WIN 55,212-2 prevented the activation of both glial cells and MAP kinases, associated with an enhancement of CREB and NF-κB activation.Our results indicate a relevant role for cannabinoid agonists in BPA, reinforcing their potential therapeutic relevance for the management of chronic pain states

    Neuropathic pain-like behavior after brachial plexus avulsion in mice: the relevance of kinin B-1 and B-2 receptors

    No full text
    The relevance of kinin B-1 (B1R) and B-2 (B2R) receptors in the brachial plexus avulsion (BPA) model was evaluated in mice, by means of genetic and pharmacological tools. BPA-induced hypernociception was absent in B1R, but not in B2R, knock-out mice. Local or intraperitoneal administration of the B2R antagonist Hoe 140 failed to affect BPA-induced mechanical hypernociception. Interestingly, local or intraperitoneal treatment with B1R antagonists, R-715 or SSR240612, dosed at the time of surgery, significantly reduced BPA-evoked mechanical hypernociception. Intrathecal or intracerebroventricular administration of these antagonists, at the surgery moment, did not prevent the hypernociception. Both antagonists, dosed by intraperitoneal or intrathecal routes (but not intracerebroventricularly) 4 d after the surgery, significantly inhibited the mechanical hypernociception. At 30 d after the BPA, only the intracerebroventricular treatment effectively reduced the hypernociception. A marked increase in B1R mRNA was observed in the hypothalamus, hippocampus, thalamus, and cortex at 4 d after BPA and only in the hypothalamus and cortex at 30 d. in the spinal cord, a slight increase in B1R mRNA expression was observed as early as at 2 d. Finally, an enhancement of B1R protein expression was found in all the analyzed brain structures at 4 and 30d after the BPA, whereas in the spinal cord, this parameter was augmented only at 4d. the data providenewevidence on the role of peripheral and central kinin B1R in the BPA model of neuropathic pain. Selective B1R antagonists might well represent valuable tools for the management of neuropathic pain.Univ Fed Santa Catarina, Dept Pharmacol, Ctr Biol Sci, BR-88049900 Florianopolis, SC, BrazilPontificia Univ Catolica Rio Grande do Sul, Sch Dent, BR-90169900 Porto Alegre, RS, BrazilUniversidade Federal de São Paulo, Escola Paulista Med, Dept Biophys, BR-04023900 São Paulo, BrazilUniversidade Federal de São Paulo, Escola Paulista Med, Dept Biophys, BR-04023900 São Paulo, BrazilWeb of Scienc
    corecore