7 research outputs found

    Theileria terrestris nov. sp. : a novel Theileria in lowland tapirs (Tapirus terrestris) from two different biomes in Brazil

    Get PDF
    The low-land tapir (Tapirus terrestris) is the largest wild terrestrial mammal found in Brazil. Although T. terrestris has been already reported as a host of hemoparasites, the occurrence and genetic identity of Piroplasmida agents in this species is still cloudy. Although it is reported that Theileria equi, an endemic equid-infective agent in Brazil, is occurring in lowland tapirs, these reports are probably misconceived diagnoses since they are solely based on small fragments of 18S rRNA that may not achieve accurate topologies on phylogenetic analyses. The present study aimed to detect and investigate the identity of Theileria spp. in tapirs from Pantanal and Cerrado biomes. Blood-DNA samples from tapirs were screened for a partial (~800 bp) 18S rRNA gene fragment from Piroplasmida and 64 (64/122; 52.46% CI: 43.66–61.11%) presented bands of expected size. Samples were submitted to different protocols for molecular characterization, including near-full length 18S rRNA gene (~1500 bp), and the ema-1 gene from T. equi. Eight sequences were obtained for extended fragments (1182–1473 bp) from the 18S rRNA gene. Moreover, three sequences from partial cox-1 and five from partial hsp70 gene were obtained. None of the samples presented amplifications for the ema-1 gene. Phylogenetic and distance analyses from the 18S rRNA sequences obtained demonstrated a clear separation from tapirs’ Theileria spp. and T. equi. Phylogenetic analyses of cox-1 and hsp70 sequences obtained herein also showed a unique clade formed by tapir’s Theileria spp. Theileria terrestris sp. nov. is positioned apart from all other Theileria species in 18S rRNA, cox-1, and hps70 phylogenetic analyses. This novel proposed species represents a new Piroplasmida clade, yet to be characterized regarding biological features, vectors involved in the transmission cycles, additional vertebrate hosts, and pathogenicity

    Expanding the Universe of Hemoplasmas: Multi-Locus Sequencing Reveals Putative Novel Hemoplasmas in Lowland Tapirs (Tapirus terrestris), the Largest Land Mammals in Brazil

    No full text
    The lowland tapir (Tapirus terrestris) is the largest land mammal in Brazil and classified as a vulnerable species, according to the assessment of the risk of extinction. The present study aimed at investigating the occurrence and genetic diversity of hemoplasmas in free-ranging T. terrestris from the Brazilian Pantanal and Cerrado biomes. Blood samples were collected from 94 living and eight road-killed tapirs, totalizing 125 samples Conventional PCR targeting four different genes (16S rRNA, 23S rRNA, RNAse P, and dnaK) were performed, and the obtained sequences were submitted for phylogenetic, genotype diversity, and distance analyses. The association between hemoplasma positivity and possible risk variables (age, gender, and origin) was assessed. Out of 122 analyzed samples, 41 (41/122; 33.61% CI: 25.84–42.38%) were positive in the 16S rRNA-based PCR assay for hemoplasmas. Positivity for hemoplasmas did not differ between tapirs’ gender and age. Tapirs from Pantanal were 5.64 times more likely to present positive results for hemoplasmas when compared to tapirs sampled in Cerrado. BLASTn, phylogenetic, genotype diversity, and distance analyses performed herein showed that the sampled lowland tapirs might be infected by two genetically distinct hemoplasmas, namely ‘Candidatus Mycoplasma haematoterrestris’ and ‘Candidatus Mycoplasma haematotapirus’. While the former was positioned into “Mycoplasma haemofelis group” and closely related to ‘Candidatus Mycoplasma haematoparvum, the latter was positioned into “Mycoplasma suis group” and closely related to ‘Candidatus Mycoplasma haematobos’. The impact of both putative novel species on tapir health status should be investigated

    Molecular Survey and Genetic Diversity of Bartonella spp. in Small Indian Mongooses (Urva auropunctata) and Their Fleas on Saint Kitts, West Indies

    No full text
    This study aimed to molecularly survey and evaluate the genetic diversity of Bartonella spp. in mongooses and their fleas from St. Kitts. Spleen (n = 54), blood (n = 71), and pooled flea samples, all identified as Ctenocephalides felis (n = 53), were submitted to TaqMan real-time quantitative PCR (qPCR) targeting Bartonella-nuoG fragment (84 bp). Positive samples underwent further conventional PCR assays targeting five loci (gltA, rpoB, fstZ, nuoG, and ITS), subsequent sequencing, and phylogenetic and haplotype analyses. The overall occurrence of Bartonella spp. in mongooses and fleas was 51.2% (64/125 [95% CI (42.1–60.2%)]) and 62.3% (33/53) [95% CI (47.9–75.2%)]), respectively. From samples sequenced across the five loci, 50.8% (33/65) were identified as Bartonella henselae, 26.2% (17/65) were 96.74–99.01% similar by BLAST analysis to an unidentified Bartonella sp. previously reported in Japanese badgers (Meles anakuma), and 23.1% (15/65) were co-infected with both species. Nucleotide polymorphism analysis showed low diversity amongst haplotypes but did concur with phylogenetic analysis, placing the unidentified species in a separate clade from B. henselae by multiple mutational events. Our data confirms that mongooses and Ctenocephalides felis fleas collected from them are not only potential reservoirs for B. henselae but also a novel Bartonella sp. which we propose be called ‘Candidatus Bartonella kittensis’

    Molecular Survey of Piroplasmids and Hemosporidians in Vampire Bats, with Evidence of Distinct Piroplasmida Lineages Parasitizing <i>Desmodus rotundus</i> from the Brazilian Amazon

    No full text
    Although bats can serve as reservoirs for several viruses and bacteria, there is limited knowledge regarding the diversity of apicomplexan protozoan belonging to the Piroplasmida and Haemosporida orders within this group of mammals. The present study aimed to investigate the occurrence and phylogenetic assessment of piroplasmids and hemosporidians in spleen samples collected from 229 vampire bats (228 Desmodus rotundus and 1 Diaemus youngii) in the states of Pará, Roraima, Amapá, and Amazonas, northern Brazil. Out of 229 bat spleen samples, 43 (18.77%) tested positive in a nested PCR for piroplasmids based on the 18S rRNA gene. Thirteen sequences (ranging from 474 to 828 base pairs) of the partial 18S rRNA gene showed 91.04–100% identity to Theileria sp., Babesia sp., and Piroplasmida previously detected in deer, tapirs, opossums, and crab-eating raccoons. The phylogenetic analysis based on the near-complete 18S rRNA gene positioned the obtained sequences from three D. rotundus in distinct clades (Theileria sensu stricto, Tapirus terrestris, and “South America Marsupialia”). All bat spleen DNA samples tested negative in a nested PCR assay for hemosporidians based on the cytB gene. The present study reported, for the first time, the presence Babesia sp. and Theileria sp. DNA in D. rotundus. The distinct positioning of the 18S rRNA gene sequences within different clades demonstrates the occurrence of different piroplasmid species in vampire bats

    Molecular Detection of Tick-Borne Agents in Cats from Southeastern and Northern Brazil

    No full text
    Even though the epidemiology of tick-borne agents (TBA) in dogs has been extensively investigated around the world, the occurrence, vectors involved, and molecular identity of these agents in cats remains elusive in many regions. Among TBA, Ehrlichia, Anaplasma, Babesia, Cytauxzoon, and Hepatozoon are responsible for diseases with non-specific clinical signs in cats, making essential the use of molecular techniques for accurate diagnosis and proper treatment. The present work aimed to investigate the occurrence and molecular identity of tick-borne agents (Ehrlichia, Anaplasma, Babesia/Theileria, Cytauxzoon, and Hepatozoon) in cats from southeastern (states of São Paulo (SP) and Minas Gerais (MG)) and northern (state of Rondînia (RO)) Brazil. For this purpose, 390 blood samples were collected from domiciled cats in MG (n = 155), SP (n = 151), and RO(n = 84) states, submitted to DNA extraction and PCR assays for Ehrlichia spp. (dsb gene), Anaplasma spp. (rrs gene), piroplasmids (18S rRNA gene), and Hepatozoon spp. (18S rRNA gene), sequencing, and phylogenetic inferences. The overall positivity for Anaplasma spp., Ehrlichia spp., Babesia/Theileria spp., Cytauxzoon spp., and Hepatozoon spp. were 7.4% (12.3% (MG) and 6.6% (SP)), 2% (4.5% (MG) and 0.6% (SP)), 0.7% (0.6% (MG), 0.6% (SP) and 1.2% (RO)), 27.2% (41.9% (MG), 24.5% (SP) and 4.8% (RO), and 0%, respectively. The phylogenetic analysis grouped the obtained sequences with ‘Candidatus Anaplasma amazonensis’, A. platys, B. vogeli, and Cytauxzoon sp. previously detected in wild felids from Brazil. qPCR specific for E. canis based on the dsb gene confirmed the molecular identity of the detected ehrlichial agent. The present study expanded the list and geographical distribution of hemoparasites in cats. ‘Candidatus Anaplasma amazonensis’, recently detected in sloths from northern Brazil, was described for the first time in cats. This is the first report of piroplasmids infecting cats in northern Brazil. Coinfection by Cytauxzoon and other TBA (Ehrlichia, Anaplasma, and B. vogeli) reported in the present study raises the need for veterinary practitioners’ awareness of cats parasitized by multiple TBA

    Co-infection with arthropod-borne pathogens in domestic cats

    No full text
    <div><p>Abstract The role of several feline vector-borne pathogens (FVBP) as a cause of disease in cats has not been clearly determined. In fact, with the exception of Bartonella spp. and hemoplasmas, FVBP in cats has not been clearly determined in Brazil yet. The present study aimed at identifying, by using molecular methods, the presence of FVBP in three cats showing non-specific clinical signs and inclusions suggestive of hemoparasites in blood smears. Cytauxzoon felis, ‘Candidatus Mycoplasma haemominutum’, Ehrlichia sp. closely related to Ehrlichia canis, and Anaplasma sp. closely related to Anaplasma phagocytophilum were detected in blood samples from two out of three sampled cats. Both cats positive for multiple FVBP did not show hematological and biochemical abnormalities. The present work emphasizes the need for molecular confirmation of co-infection by multiple FVBP in cats presenting non-specific clinical signs and inclusions resembling hemoparasites in blood smears.</p></div
    corecore