3 research outputs found

    Genes involved in thoracic exoskeleton formation during the pupal-to-adult molt in a social insect model, Apis mellifera

    Get PDF
    Background: The insect exoskeleton provides shape, waterproofing, and locomotion via attached somatic muscles. The exoskeleton is renewed during molting, a process regulated by ecdysteroid hormones. The holometabolous pupa transforms into an adult during the imaginal molt, when the epidermis synthe3sizes the definitive exoskeleton that then differentiates progressively. An important issue in insect development concerns how the exoskeletal regions are constructed to provide their morphological, physiological and mechanical functions. We used whole-genome oligonucleotide microarrays to screen for genes involved in exoskeletal formation in the honeybee thoracic dorsum. Our analysis included three sampling times during the pupal-to-adult molt, i.e., before, during and after the ecdysteroid-induced apolysis that triggers synthesis of the adult exoskeleton.Results: Gene ontology annotation based on orthologous relationships with Drosophila melanogaster genes placed the honeybee differentially expressed genes (DEGs) into distinct categories of Biological Process and Molecular Function, depending on developmental time, revealing the functional elements required for adult exoskeleton formation. Of the 1,253 unique DEGs, 547 were upregulated in the thoracic dorsum after apolysis, suggesting induction by the ecdysteroid pulse. The upregulated gene set included 20 of the 47 cuticular protein (CP) genes that were previously identified in the honeybee genome, and three novel putative CP genes that do not belong to a known CP family. In situ hybridization showed that two of the novel genes were abundantly expressed in the epidermis during adult exoskeleton formation, strongly implicating them as genuine CP genes. Conserved sequence motifs identified the CP genes as members of the CPR, Tweedle, Apidermin, CPF, CPLCP1 and Analogous-to-Peritrophins families. Furthermore, 28 of the 36 muscle-related DEGs were upregulated during the de novo formation of striated fibers attached to the exoskeleton. A search for cis-regulatory motifs in the 5′-untranslated region of the DEGs revealed potential binding sites for known transcription factors. Construction of a regulatory network showed that various upregulated CP- and muscle-related genes (15 and 21 genes, respectively) share common elements, suggesting co-regulation during thoracic exoskeleton formation.Conclusions: These findings help reveal molecular aspects of rigid thoracic exoskeleton formation during the ecdysteroid-coordinated pupal-to-adult molt in the honeybee

    The sugarcane signal transduction (SUCAST) catalogue: prospecting signal transduction in sugarcane

    No full text
    EST sequencing has enabled the discovery of many new genes in a vast array of organisms, and the utility of this approach to the scientific community is greatly increased by the establishment of fully annotated databases. The present study aimed to identify sugarcane ESTs sequenced in the sugarcane expressed sequence tag (SUCEST) project (<A HREF="http://sucest.lad.ic.unicamp.br/">http://sucest.lad.ic.unicamp.br</A>) that corresponded to signal transduction components. We also produced a sugarcane signal transduction (SUCAST) catalogue (<A HREF="http://sucest.lad.ic.unicamp.br/private/mining-reports/QG/QG-mining.htm">http://sucest.lad.ic.unicamp.br/private/mining-reports/QG/QG-mining.htm</A>) that covered the main categories and pathways. Expressed sequence tags (ESTs) encoding enzymes for hormone (gibberellins, ethylene, auxins, abscisic acid and jasmonic acid) biosynthetic pathways were found and tissue specificity was inferred from their relative frequency of occurrence in the different libraries. Whenever possible, transducers of hormones and plant peptide signaling were catalogued to the respective pathway. Over 100 receptors were found in sugarcane, which contains a large family of Ser/Thr kinase receptors and also photoreceptors, histidine kinase receptors and their response regulators. G-protein and small GTPases were analyzed and compared to known members of these families found in mammalian and plant systems. Major kinase and phosphatase pathways were mapped, with special attention being given to the MAP kinase and the inositol pathway, both of which are well known in plants.<br>O sequenciamento de ESTs (etiquetas de sequencias transcritas) tem possibilitado a descoberta de muitos novos genes em uma ampla variedade de organismos. Um aumento do aproveitamento desta informação pela comunidade científica tem sido possível graças ao desenvolvimento de base de dados contendo seqüências completamente anotadas. O trabalho aqui relatado teve como objetivo a identificação de ESTs de cana de açúcar seqüenciadas através do projeto SUCEST (<A HREF="http://sucest.lad.ic.%20unicamp.br/">http://sucest.lad.ic. unicamp.br</A>) que codificam para proteínas envolvidas em mecanismos de transdução de sinal. Nós também preparamos um catálogo dos componentes de transdução de sinal da cana de açúcar (SUCAST) englobando as principais categorias e vias conhecidas (<A HREF="http://sucest.lad.ic.unicamp.%20br/private/mining-reports/QG/QG-mining.htm">http://sucest.lad.ic.unicamp. br/private/mining-reports/QG/QG-mining.htm</A>). ESTs codificadoras de enzimas envolvidas nas rotas de biossíntese de hormônios (giberelinas, etileno, auxinas, ácido abscíssico, ácido jasmônico) foram encontradas e sua expressão específica nos tecidos foi inferida a partir de seu enriquecimento nas diferentes bibliotecas. Quando possível, transmissores do sinal hormonal e da resposta a peptídeos produzidos pela planta foram associados a suas respectivas vias. Mais de 100 receptores foram encontrados na cana de açúcar, entre os quais uma grande família de receptores Ser/Thr quinase e também de fotoreceptores, receptores do tipo histidina quinase e seus respectivos reguladores da resposta. Proteínas G e GTPases pequenas foram também analisadas e comparadas com membros destas famílias já conhecidos em mamíferos e plantas. As vias principais que envolvem a participação de proteínas quinases e fosfatases foram mapeadas, em especial as vias da quinase MAP quinase e do inositol que são bem estudadas em plantas

    Neotropical freshwater fisheries : A dataset of occurrence and abundance of freshwater fishes in the Neotropics

    No full text
    The Neotropical region hosts 4225 freshwater fish species, ranking first among the world's most diverse regions for freshwater fishes. Our NEOTROPICAL FRESHWATER FISHES data set is the first to produce a large-scale Neotropical freshwater fish inventory, covering the entire Neotropical region from Mexico and the Caribbean in the north to the southern limits in Argentina, Paraguay, Chile, and Uruguay. We compiled 185,787 distribution records, with unique georeferenced coordinates, for the 4225 species, represented by occurrence and abundance data. The number of species for the most numerous orders are as follows: Characiformes (1289), Siluriformes (1384), Cichliformes (354), Cyprinodontiformes (245), and Gymnotiformes (135). The most recorded species was the characid Astyanax fasciatus (4696 records). We registered 116,802 distribution records for native species, compared to 1802 distribution records for nonnative species. The main aim of the NEOTROPICAL FRESHWATER FISHES data set was to make these occurrence and abundance data accessible for international researchers to develop ecological and macroecological studies, from local to regional scales, with focal fish species, families, or orders. We anticipate that the NEOTROPICAL FRESHWATER FISHES data set will be valuable for studies on a wide range of ecological processes, such as trophic cascades, fishery pressure, the effects of habitat loss and fragmentation, and the impacts of species invasion and climate change. There are no copyright restrictions on the data, and please cite this data paper when using the data in publications
    corecore