7 research outputs found

    Genetic and pharmacological inhibition of autophagy increases the monoubiquitination of non-photosynthetic phosphopyruvate carboxylase

    Get PDF
    Phosphoenolpyruvate carboxylase (PEPC) is an enzyme with key roles in carbon and nitrogen metabolisms. The mechanisms that control enzyme stability and turnover are not well known. This paper investigates the degradation of PEPC via selective autophagy, including the role of the monoubiquitination of the enzyme in this process. In Arabidopsis, the genetic inhibition of autophagy increases the amount of monoubiquitinated PEPC in the atg2, atg5, and atg18a lines. The same is observed in nbr1, which is deficient in a protein that recruits monoubiquitinated substrates for selective autophagy. In cultured tobacco cells, the chemical inhibition of the degradation of autophagic substrates increases the quantity of PEPC proteins. When the formation of the autophagosome is blocked with 3-methyladenine (3-MA), monoubiquitinated PEPC accumulates as a result. Finally, pull-down experiments with a truncated version of NBR1 demonstrate the recovery of intact and/or fragmented PEPC in Arabidopsis leaves and roots, as well as cultured tobacco cells. Taken together, the results show that a fraction of PEPC is cleaved via selective autophagy and that the monoubiquitination of the enzyme has a role in its recruitment towards this pathway. Although autophagy seems to be a minor pathway, the results presented here increase the knowledge about the role of monoubiquitination and the regulation of PEPC degradation

    Salinity promotes opposite patterns of carbonylation and nitrosylation of C4 phosphoenolpyruvate carboxylase in sorghum leaves

    No full text
    Main ConclusioN: Carbonylation inactivates sorghum C4 PEPCase while nitrosylation has little impact on its activity but holds back carbonylation. This interplay could be important to preserve photosynthetic C PEPCase activity in salinity. Previous work had shown that nitric acid (NO) increased phosphoenolpyruvate carboxylase kinase (PEPCase-k) activity, promoting the phosphorylation of phosphoenolpyruvate carboxylase (PEPCase) in sorghum leaves (Monreal et al. in Planta 238:859-869, 2013b). The present work investigates the effect of NO on C PEPCase in sorghum leaves and its interplay with carbonylation, an oxidative modification frequently observed under salt stress. The PEPCase of sorghum leaves could be carbonylated in vitro and in vivo, and this post-translational modification (PTM) was accompanied by a loss of its activity. Similarly, PEPCase could be S-nitrosylated in vitro and in vivo, and this PTM had little impact on its activity. The S-nitrosylated PEPCase showed increased resistance towards subsequent carbonylation, both in vitro and in vivo. Under salt shock, carbonylation of PEPCase increased in parallel with decreased S-nitrosylation of the enzyme. Subsequent increase of S-nitrosylation was accompanied by decreased carbonylation. Taken together, the results suggest that S-nitrosylation could contribute to maintain C4 PEPCase activity in stressed sorghum plants. Thus, salt-induced NO synthesis would be protecting photosynthetic PEPCase activity from oxidative inactivation while promoting its phosphorylation, which will guarantee its optimal functioning in suboptimal conditions

    Film forming solutions based on gelatin and poly(vinyl alcohol) blends: Thermal and rheological characterizations

    No full text
    The objective of this work was to study the theological and thermal properties of film forming solutions (FFS) based on blends of gelatin and poly(vinyl alcohol) (PVA). The effect of the PVA concentration and plasticizer presence on the flow behavior, and viscoelastic and thermal properties of FFS was studied by steady-shear flow and oscillatory experiments, and also, by microcalorimetry. The FB presented Newtonian behavior at 30 degrees C, and the viscosity was not affected neither by the PVA concentration nor by the plasticizer. All FFS presented a phase transition during tests applying temperature scanning. It was verified that the PVA affected the viscoelastic properties of FFS by dilution of gelatin. This behavior was confirmed by microcalorimetric analysis. The behaviors of the storage (G`) and loss (G ``) moduli as a function of frequency of FFS obtained at 5 degrees C were typical of physical gels; with the G` higher than the G ``. The strength of the gels was affected by the PVA concentration. (C) 2009 Elsevier Ltd. All rights reserved.FAPESP[05/57781-8]PV[05/54952-6]CNPqInstituto Politecnico Nacional in Mexic

    Nitric oxide regulation of leaf phosphoenolpyruvate carboxylase-kinase activity: implication in sorghum responses to salinity

    Get PDF
    Nitric oxide (NO) is a signaling molecule that mediates many plant responses to biotic and abiotic stresses, including salt stress. Interestingly, salinity increases NO production selectively in mesophyll cells of sorghum leaves, where photosynthetic C4 phosphoenolpyruvate carboxylase (C4 PEPCase) is located. PEPCase is regulated by a phosphoenolpyruvate carboxylase-kinase (PEPCase-k), which levels are greatly enhanced by salinity in sorghum. This work investigated whether NO is involved in this effect. NO donors (SNP, SNAP), the inhibitor of NO synthesis NNA, and the NO scavenger cPTIO were used for long- and short-term treatments. Long-term treatments had multifaceted consequences on both PPCK gene expression and PEPCase-k activity, and they also decreased photosynthetic gas-exchange parameters and plant growth. Nonetheless, it could be observed that SNP increased PEPCase-k activity, resembling salinity effect. Short-term treatments with NO donors, which did not change photosynthetic gas-exchange parameters and PPCK gene expression, increased PEPCase-k activity both in illuminated leaves and in leaves kept at dark. At least in part, these effects were independent on protein synthesis. PEPCase-k activity was not decreased by short-term treatment with cycloheximide in NaCl-treated plants; on the contrary, it was decreased by cPTIO. In summary, NO donors mimicked salt effect on PEPCase-k activity, and scavenging of NO abolished it. Collectively, these results indicate that NO is involved in the complex control of PEPCase-k activity, and it may mediate some of the plant responses to salinity.Fil: Monreal, José A.. Universidad de Sevilla; EspañaFil: Arias Baldrich, Cirenia. Universidad de Sevilla; EspañaFil: Tossi, Vanesa Eleonora. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mar del Plata. Instituto de Investigaciones Biológicas; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Feria, Ana B.. Universidad de Sevilla; EspañaFil: Rubio Casal, Alfredo. Universidad de Sevilla; EspañaFil: García Mata, Carlos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mar del Plata. Instituto de Investigaciones Biológicas; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Lamattina, Lorenzo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mar del Plata. Instituto de Investigaciones Biológicas; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales; ArgentinaFil: García Mauriño, Sofía. Universidad de Sevilla; Españ
    corecore